Metamath Proof Explorer


Theorem rspcl

Description: The span of a set of ring elements is an ideal. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses rspcl.k K=RSpanR
rspcl.b B=BaseR
rspcl.u U=LIdealR
Assertion rspcl RRingGBKGU

Proof

Step Hyp Ref Expression
1 rspcl.k K=RSpanR
2 rspcl.b B=BaseR
3 rspcl.u U=LIdealR
4 rlmlmod RRingringLModRLMod
5 rlmbas BaseR=BaseringLModR
6 2 5 eqtri B=BaseringLModR
7 lidlval LIdealR=LSubSpringLModR
8 3 7 eqtri U=LSubSpringLModR
9 rspval RSpanR=LSpanringLModR
10 1 9 eqtri K=LSpanringLModR
11 6 8 10 lspcl ringLModRLModGBKGU
12 4 11 sylan RRingGBKGU