Metamath Proof Explorer


Theorem rspcl

Description: The span of a set of ring elements is an ideal. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses rspcl.k K = RSpan R
rspcl.b B = Base R
rspcl.u U = LIdeal R
Assertion rspcl R Ring G B K G U

Proof

Step Hyp Ref Expression
1 rspcl.k K = RSpan R
2 rspcl.b B = Base R
3 rspcl.u U = LIdeal R
4 rlmlmod R Ring ringLMod R LMod
5 rlmbas Base R = Base ringLMod R
6 2 5 eqtri B = Base ringLMod R
7 lidlval LIdeal R = LSubSp ringLMod R
8 3 7 eqtri U = LSubSp ringLMod R
9 rspval RSpan R = LSpan ringLMod R
10 1 9 eqtri K = LSpan ringLMod R
11 6 8 10 lspcl ringLMod R LMod G B K G U
12 4 11 sylan R Ring G B K G U