Metamath Proof Explorer


Theorem rspssid

Description: The span of a set of ring elements contains those elements. (Contributed by Stefan O'Rear, 3-Jan-2015)

Ref Expression
Hypotheses rspcl.k K=RSpanR
rspcl.b B=BaseR
Assertion rspssid RRingGBGKG

Proof

Step Hyp Ref Expression
1 rspcl.k K=RSpanR
2 rspcl.b B=BaseR
3 rlmlmod RRingringLModRLMod
4 rlmbas BaseR=BaseringLModR
5 2 4 eqtri B=BaseringLModR
6 rspval RSpanR=LSpanringLModR
7 1 6 eqtri K=LSpanringLModR
8 5 7 lspssid ringLModRLModGBGKG
9 3 8 sylan RRingGBGKG