Metamath Proof Explorer


Theorem prmidlc

Description: Property of a prime ideal in a commutative ring. (Contributed by Jeff Madsen, 17-Jun-2011) (Revised by Thierry Arnoux, 12-Jan-2024)

Ref Expression
Hypotheses isprmidlc.1 B = Base R
isprmidlc.2 · ˙ = R
Assertion prmidlc R CRing P PrmIdeal R I B J B I · ˙ J P I P J P

Proof

Step Hyp Ref Expression
1 isprmidlc.1 B = Base R
2 isprmidlc.2 · ˙ = R
3 simpr1 R CRing P PrmIdeal R I B J B I · ˙ J P I B
4 simpr2 R CRing P PrmIdeal R I B J B I · ˙ J P J B
5 1 2 isprmidlc R CRing P PrmIdeal R P LIdeal R P B a B b B a · ˙ b P a P b P
6 5 biimpa R CRing P PrmIdeal R P LIdeal R P B a B b B a · ˙ b P a P b P
7 6 simp3d R CRing P PrmIdeal R a B b B a · ˙ b P a P b P
8 7 adantr R CRing P PrmIdeal R I B J B I · ˙ J P a B b B a · ˙ b P a P b P
9 simpr3 R CRing P PrmIdeal R I B J B I · ˙ J P I · ˙ J P
10 oveq12 a = I b = J a · ˙ b = I · ˙ J
11 10 eleq1d a = I b = J a · ˙ b P I · ˙ J P
12 simpl a = I b = J a = I
13 12 eleq1d a = I b = J a P I P
14 simpr a = I b = J b = J
15 14 eleq1d a = I b = J b P J P
16 13 15 orbi12d a = I b = J a P b P I P J P
17 11 16 imbi12d a = I b = J a · ˙ b P a P b P I · ˙ J P I P J P
18 17 rspc2gv I B J B a B b B a · ˙ b P a P b P I · ˙ J P I P J P
19 18 imp31 I B J B a B b B a · ˙ b P a P b P I · ˙ J P I P J P
20 3 4 8 9 19 syl1111anc R CRing P PrmIdeal R I B J B I · ˙ J P I P J P