| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isprmidlc.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
isprmidlc.2 |
⊢ · = ( .r ‘ 𝑅 ) |
| 3 |
|
simpr1 |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑃 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ( 𝐼 ∈ 𝐵 ∧ 𝐽 ∈ 𝐵 ∧ ( 𝐼 · 𝐽 ) ∈ 𝑃 ) ) → 𝐼 ∈ 𝐵 ) |
| 4 |
|
simpr2 |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑃 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ( 𝐼 ∈ 𝐵 ∧ 𝐽 ∈ 𝐵 ∧ ( 𝐼 · 𝐽 ) ∈ 𝑃 ) ) → 𝐽 ∈ 𝐵 ) |
| 5 |
1 2
|
isprmidlc |
⊢ ( 𝑅 ∈ CRing → ( 𝑃 ∈ ( PrmIdeal ‘ 𝑅 ) ↔ ( 𝑃 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑃 ≠ 𝐵 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) ∈ 𝑃 → ( 𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃 ) ) ) ) ) |
| 6 |
5
|
biimpa |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑃 ∈ ( PrmIdeal ‘ 𝑅 ) ) → ( 𝑃 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑃 ≠ 𝐵 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) ∈ 𝑃 → ( 𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃 ) ) ) ) |
| 7 |
6
|
simp3d |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑃 ∈ ( PrmIdeal ‘ 𝑅 ) ) → ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) ∈ 𝑃 → ( 𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃 ) ) ) |
| 8 |
7
|
adantr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑃 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ( 𝐼 ∈ 𝐵 ∧ 𝐽 ∈ 𝐵 ∧ ( 𝐼 · 𝐽 ) ∈ 𝑃 ) ) → ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) ∈ 𝑃 → ( 𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃 ) ) ) |
| 9 |
|
simpr3 |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑃 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ( 𝐼 ∈ 𝐵 ∧ 𝐽 ∈ 𝐵 ∧ ( 𝐼 · 𝐽 ) ∈ 𝑃 ) ) → ( 𝐼 · 𝐽 ) ∈ 𝑃 ) |
| 10 |
|
oveq12 |
⊢ ( ( 𝑎 = 𝐼 ∧ 𝑏 = 𝐽 ) → ( 𝑎 · 𝑏 ) = ( 𝐼 · 𝐽 ) ) |
| 11 |
10
|
eleq1d |
⊢ ( ( 𝑎 = 𝐼 ∧ 𝑏 = 𝐽 ) → ( ( 𝑎 · 𝑏 ) ∈ 𝑃 ↔ ( 𝐼 · 𝐽 ) ∈ 𝑃 ) ) |
| 12 |
|
simpl |
⊢ ( ( 𝑎 = 𝐼 ∧ 𝑏 = 𝐽 ) → 𝑎 = 𝐼 ) |
| 13 |
12
|
eleq1d |
⊢ ( ( 𝑎 = 𝐼 ∧ 𝑏 = 𝐽 ) → ( 𝑎 ∈ 𝑃 ↔ 𝐼 ∈ 𝑃 ) ) |
| 14 |
|
simpr |
⊢ ( ( 𝑎 = 𝐼 ∧ 𝑏 = 𝐽 ) → 𝑏 = 𝐽 ) |
| 15 |
14
|
eleq1d |
⊢ ( ( 𝑎 = 𝐼 ∧ 𝑏 = 𝐽 ) → ( 𝑏 ∈ 𝑃 ↔ 𝐽 ∈ 𝑃 ) ) |
| 16 |
13 15
|
orbi12d |
⊢ ( ( 𝑎 = 𝐼 ∧ 𝑏 = 𝐽 ) → ( ( 𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃 ) ↔ ( 𝐼 ∈ 𝑃 ∨ 𝐽 ∈ 𝑃 ) ) ) |
| 17 |
11 16
|
imbi12d |
⊢ ( ( 𝑎 = 𝐼 ∧ 𝑏 = 𝐽 ) → ( ( ( 𝑎 · 𝑏 ) ∈ 𝑃 → ( 𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃 ) ) ↔ ( ( 𝐼 · 𝐽 ) ∈ 𝑃 → ( 𝐼 ∈ 𝑃 ∨ 𝐽 ∈ 𝑃 ) ) ) ) |
| 18 |
17
|
rspc2gv |
⊢ ( ( 𝐼 ∈ 𝐵 ∧ 𝐽 ∈ 𝐵 ) → ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) ∈ 𝑃 → ( 𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃 ) ) → ( ( 𝐼 · 𝐽 ) ∈ 𝑃 → ( 𝐼 ∈ 𝑃 ∨ 𝐽 ∈ 𝑃 ) ) ) ) |
| 19 |
18
|
imp31 |
⊢ ( ( ( ( 𝐼 ∈ 𝐵 ∧ 𝐽 ∈ 𝐵 ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) ∈ 𝑃 → ( 𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃 ) ) ) ∧ ( 𝐼 · 𝐽 ) ∈ 𝑃 ) → ( 𝐼 ∈ 𝑃 ∨ 𝐽 ∈ 𝑃 ) ) |
| 20 |
3 4 8 9 19
|
syl1111anc |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑃 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ( 𝐼 ∈ 𝐵 ∧ 𝐽 ∈ 𝐵 ∧ ( 𝐼 · 𝐽 ) ∈ 𝑃 ) ) → ( 𝐼 ∈ 𝑃 ∨ 𝐽 ∈ 𝑃 ) ) |