| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0ringprmidl.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
prmidlssidl |
⊢ ( 𝑅 ∈ Ring → ( PrmIdeal ‘ 𝑅 ) ⊆ ( LIdeal ‘ 𝑅 ) ) |
| 3 |
2
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) → ( PrmIdeal ‘ 𝑅 ) ⊆ ( LIdeal ‘ 𝑅 ) ) |
| 4 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 5 |
1 4
|
0ringidl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) → ( LIdeal ‘ 𝑅 ) = { { ( 0g ‘ 𝑅 ) } } ) |
| 6 |
3 5
|
sseqtrd |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) → ( PrmIdeal ‘ 𝑅 ) ⊆ { { ( 0g ‘ 𝑅 ) } } ) |
| 7 |
6
|
sselda |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) ∧ 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑖 ∈ { { ( 0g ‘ 𝑅 ) } } ) |
| 8 |
|
elsni |
⊢ ( 𝑖 ∈ { { ( 0g ‘ 𝑅 ) } } → 𝑖 = { ( 0g ‘ 𝑅 ) } ) |
| 9 |
7 8
|
syl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) ∧ 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑖 = { ( 0g ‘ 𝑅 ) } ) |
| 10 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 11 |
1 10
|
prmidlnr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑖 ≠ 𝐵 ) |
| 12 |
11
|
adantlr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) ∧ 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑖 ≠ 𝐵 ) |
| 13 |
1 4
|
0ring |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) → 𝐵 = { ( 0g ‘ 𝑅 ) } ) |
| 14 |
13
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) ∧ 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝐵 = { ( 0g ‘ 𝑅 ) } ) |
| 15 |
12 14
|
neeqtrd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) ∧ 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑖 ≠ { ( 0g ‘ 𝑅 ) } ) |
| 16 |
15
|
neneqd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) ∧ 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) ) → ¬ 𝑖 = { ( 0g ‘ 𝑅 ) } ) |
| 17 |
9 16
|
pm2.65da |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) → ¬ 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) ) |
| 18 |
17
|
eq0rdv |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) → ( PrmIdeal ‘ 𝑅 ) = ∅ ) |