Metamath Proof Explorer


Theorem 0ringprmidl

Description: The trivial ring does not have any prime ideal. (Contributed by Thierry Arnoux, 30-Jun-2024)

Ref Expression
Hypothesis 0ringprmidl.1 B = Base R
Assertion 0ringprmidl R Ring B = 1 PrmIdeal R =

Proof

Step Hyp Ref Expression
1 0ringprmidl.1 B = Base R
2 prmidlssidl R Ring PrmIdeal R LIdeal R
3 2 adantr R Ring B = 1 PrmIdeal R LIdeal R
4 eqid 0 R = 0 R
5 1 4 0ringidl R Ring B = 1 LIdeal R = 0 R
6 3 5 sseqtrd R Ring B = 1 PrmIdeal R 0 R
7 6 sselda R Ring B = 1 i PrmIdeal R i 0 R
8 elsni i 0 R i = 0 R
9 7 8 syl R Ring B = 1 i PrmIdeal R i = 0 R
10 eqid R = R
11 1 10 prmidlnr R Ring i PrmIdeal R i B
12 11 adantlr R Ring B = 1 i PrmIdeal R i B
13 1 4 0ring R Ring B = 1 B = 0 R
14 13 adantr R Ring B = 1 i PrmIdeal R B = 0 R
15 12 14 neeqtrd R Ring B = 1 i PrmIdeal R i 0 R
16 15 neneqd R Ring B = 1 i PrmIdeal R ¬ i = 0 R
17 9 16 pm2.65da R Ring B = 1 ¬ i PrmIdeal R
18 17 eq0rdv R Ring B = 1 PrmIdeal R =