| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0ringprmidl.1 |
|- B = ( Base ` R ) |
| 2 |
|
prmidlssidl |
|- ( R e. Ring -> ( PrmIdeal ` R ) C_ ( LIdeal ` R ) ) |
| 3 |
2
|
adantr |
|- ( ( R e. Ring /\ ( # ` B ) = 1 ) -> ( PrmIdeal ` R ) C_ ( LIdeal ` R ) ) |
| 4 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 5 |
1 4
|
0ringidl |
|- ( ( R e. Ring /\ ( # ` B ) = 1 ) -> ( LIdeal ` R ) = { { ( 0g ` R ) } } ) |
| 6 |
3 5
|
sseqtrd |
|- ( ( R e. Ring /\ ( # ` B ) = 1 ) -> ( PrmIdeal ` R ) C_ { { ( 0g ` R ) } } ) |
| 7 |
6
|
sselda |
|- ( ( ( R e. Ring /\ ( # ` B ) = 1 ) /\ i e. ( PrmIdeal ` R ) ) -> i e. { { ( 0g ` R ) } } ) |
| 8 |
|
elsni |
|- ( i e. { { ( 0g ` R ) } } -> i = { ( 0g ` R ) } ) |
| 9 |
7 8
|
syl |
|- ( ( ( R e. Ring /\ ( # ` B ) = 1 ) /\ i e. ( PrmIdeal ` R ) ) -> i = { ( 0g ` R ) } ) |
| 10 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 11 |
1 10
|
prmidlnr |
|- ( ( R e. Ring /\ i e. ( PrmIdeal ` R ) ) -> i =/= B ) |
| 12 |
11
|
adantlr |
|- ( ( ( R e. Ring /\ ( # ` B ) = 1 ) /\ i e. ( PrmIdeal ` R ) ) -> i =/= B ) |
| 13 |
1 4
|
0ring |
|- ( ( R e. Ring /\ ( # ` B ) = 1 ) -> B = { ( 0g ` R ) } ) |
| 14 |
13
|
adantr |
|- ( ( ( R e. Ring /\ ( # ` B ) = 1 ) /\ i e. ( PrmIdeal ` R ) ) -> B = { ( 0g ` R ) } ) |
| 15 |
12 14
|
neeqtrd |
|- ( ( ( R e. Ring /\ ( # ` B ) = 1 ) /\ i e. ( PrmIdeal ` R ) ) -> i =/= { ( 0g ` R ) } ) |
| 16 |
15
|
neneqd |
|- ( ( ( R e. Ring /\ ( # ` B ) = 1 ) /\ i e. ( PrmIdeal ` R ) ) -> -. i = { ( 0g ` R ) } ) |
| 17 |
9 16
|
pm2.65da |
|- ( ( R e. Ring /\ ( # ` B ) = 1 ) -> -. i e. ( PrmIdeal ` R ) ) |
| 18 |
17
|
eq0rdv |
|- ( ( R e. Ring /\ ( # ` B ) = 1 ) -> ( PrmIdeal ` R ) = (/) ) |