| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qsidom.1 |
|- Q = ( R /s ( R ~QG I ) ) |
| 2 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
| 3 |
|
prmidlidl |
|- ( ( R e. Ring /\ I e. ( PrmIdeal ` R ) ) -> I e. ( LIdeal ` R ) ) |
| 4 |
2 3
|
sylan |
|- ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) -> I e. ( LIdeal ` R ) ) |
| 5 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
| 6 |
1 5
|
quscrng |
|- ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) -> Q e. CRing ) |
| 7 |
4 6
|
syldan |
|- ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) -> Q e. CRing ) |
| 8 |
5
|
crng2idl |
|- ( R e. CRing -> ( LIdeal ` R ) = ( 2Ideal ` R ) ) |
| 9 |
8
|
eleq2d |
|- ( R e. CRing -> ( I e. ( LIdeal ` R ) <-> I e. ( 2Ideal ` R ) ) ) |
| 10 |
9
|
biimpa |
|- ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) -> I e. ( 2Ideal ` R ) ) |
| 11 |
4 10
|
syldan |
|- ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) -> I e. ( 2Ideal ` R ) ) |
| 12 |
|
eqid |
|- ( 2Ideal ` R ) = ( 2Ideal ` R ) |
| 13 |
1 12
|
qusring |
|- ( ( R e. Ring /\ I e. ( 2Ideal ` R ) ) -> Q e. Ring ) |
| 14 |
2 11 13
|
syl2an2r |
|- ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) -> Q e. Ring ) |
| 15 |
|
eqid |
|- ( Base ` Q ) = ( Base ` Q ) |
| 16 |
|
eqid |
|- ( 0g ` Q ) = ( 0g ` Q ) |
| 17 |
15 16
|
ring0cl |
|- ( Q e. Ring -> ( 0g ` Q ) e. ( Base ` Q ) ) |
| 18 |
14 17
|
syl |
|- ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) -> ( 0g ` Q ) e. ( Base ` Q ) ) |
| 19 |
18
|
snssd |
|- ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) -> { ( 0g ` Q ) } C_ ( Base ` Q ) ) |
| 20 |
|
lidlnsg |
|- ( ( R e. Ring /\ I e. ( LIdeal ` R ) ) -> I e. ( NrmSGrp ` R ) ) |
| 21 |
2 20
|
sylan |
|- ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) -> I e. ( NrmSGrp ` R ) ) |
| 22 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 23 |
1 22
|
qus0 |
|- ( I e. ( NrmSGrp ` R ) -> [ ( 0g ` R ) ] ( R ~QG I ) = ( 0g ` Q ) ) |
| 24 |
21 23
|
syl |
|- ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) -> [ ( 0g ` R ) ] ( R ~QG I ) = ( 0g ` Q ) ) |
| 25 |
5
|
lidlsubg |
|- ( ( R e. Ring /\ I e. ( LIdeal ` R ) ) -> I e. ( SubGrp ` R ) ) |
| 26 |
2 25
|
sylan |
|- ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) -> I e. ( SubGrp ` R ) ) |
| 27 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 28 |
|
eqid |
|- ( R ~QG I ) = ( R ~QG I ) |
| 29 |
27 28 22
|
eqgid |
|- ( I e. ( SubGrp ` R ) -> [ ( 0g ` R ) ] ( R ~QG I ) = I ) |
| 30 |
26 29
|
syl |
|- ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) -> [ ( 0g ` R ) ] ( R ~QG I ) = I ) |
| 31 |
24 30
|
eqtr3d |
|- ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) -> ( 0g ` Q ) = I ) |
| 32 |
4 31
|
syldan |
|- ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) -> ( 0g ` Q ) = I ) |
| 33 |
32
|
sneqd |
|- ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) -> { ( 0g ` Q ) } = { I } ) |
| 34 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 35 |
27 34
|
isprmidlc |
|- ( R e. CRing -> ( I e. ( PrmIdeal ` R ) <-> ( I e. ( LIdeal ` R ) /\ I =/= ( Base ` R ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) e. I -> ( x e. I \/ y e. I ) ) ) ) ) |
| 36 |
35
|
biimpa |
|- ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) -> ( I e. ( LIdeal ` R ) /\ I =/= ( Base ` R ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) e. I -> ( x e. I \/ y e. I ) ) ) ) |
| 37 |
36
|
simp2d |
|- ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) -> I =/= ( Base ` R ) ) |
| 38 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
| 39 |
2 38
|
syl |
|- ( R e. CRing -> R e. Grp ) |
| 40 |
39
|
ad2antrr |
|- ( ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) /\ ( Base ` Q ) = { I } ) -> R e. Grp ) |
| 41 |
2
|
ad2antrr |
|- ( ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) /\ ( Base ` Q ) = { I } ) -> R e. Ring ) |
| 42 |
4
|
adantr |
|- ( ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) /\ ( Base ` Q ) = { I } ) -> I e. ( LIdeal ` R ) ) |
| 43 |
41 42 25
|
syl2anc |
|- ( ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) /\ ( Base ` Q ) = { I } ) -> I e. ( SubGrp ` R ) ) |
| 44 |
|
simpr |
|- ( ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) /\ ( Base ` Q ) = { I } ) -> ( Base ` Q ) = { I } ) |
| 45 |
27 1
|
qustrivr |
|- ( ( R e. Grp /\ I e. ( SubGrp ` R ) /\ ( Base ` Q ) = { I } ) -> I = ( Base ` R ) ) |
| 46 |
40 43 44 45
|
syl3anc |
|- ( ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) /\ ( Base ` Q ) = { I } ) -> I = ( Base ` R ) ) |
| 47 |
37 46
|
mteqand |
|- ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) -> ( Base ` Q ) =/= { I } ) |
| 48 |
47
|
necomd |
|- ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) -> { I } =/= ( Base ` Q ) ) |
| 49 |
33 48
|
eqnetrd |
|- ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) -> { ( 0g ` Q ) } =/= ( Base ` Q ) ) |
| 50 |
|
pssdifn0 |
|- ( ( { ( 0g ` Q ) } C_ ( Base ` Q ) /\ { ( 0g ` Q ) } =/= ( Base ` Q ) ) -> ( ( Base ` Q ) \ { ( 0g ` Q ) } ) =/= (/) ) |
| 51 |
19 49 50
|
syl2anc |
|- ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) -> ( ( Base ` Q ) \ { ( 0g ` Q ) } ) =/= (/) ) |
| 52 |
|
n0 |
|- ( ( ( Base ` Q ) \ { ( 0g ` Q ) } ) =/= (/) <-> E. x x e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) |
| 53 |
51 52
|
sylib |
|- ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) -> E. x x e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) |
| 54 |
16 15
|
ringelnzr |
|- ( ( Q e. Ring /\ x e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) -> Q e. NzRing ) |
| 55 |
54
|
ex |
|- ( Q e. Ring -> ( x e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) -> Q e. NzRing ) ) |
| 56 |
55
|
exlimdv |
|- ( Q e. Ring -> ( E. x x e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) -> Q e. NzRing ) ) |
| 57 |
14 53 56
|
sylc |
|- ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) -> Q e. NzRing ) |
| 58 |
36
|
simp3d |
|- ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) -> A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) e. I -> ( x e. I \/ y e. I ) ) ) |
| 59 |
58
|
ad7antr |
|- ( ( ( ( ( ( ( ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) /\ a e. ( Base ` Q ) ) /\ b e. ( Base ` Q ) ) /\ ( a ( .r ` Q ) b ) = ( 0g ` Q ) ) /\ x e. ( Base ` R ) ) /\ a = [ x ] ( R ~QG I ) ) /\ y e. ( Base ` R ) ) /\ b = [ y ] ( R ~QG I ) ) -> A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) e. I -> ( x e. I \/ y e. I ) ) ) |
| 60 |
|
simp-4r |
|- ( ( ( ( ( ( ( ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) /\ a e. ( Base ` Q ) ) /\ b e. ( Base ` Q ) ) /\ ( a ( .r ` Q ) b ) = ( 0g ` Q ) ) /\ x e. ( Base ` R ) ) /\ a = [ x ] ( R ~QG I ) ) /\ y e. ( Base ` R ) ) /\ b = [ y ] ( R ~QG I ) ) -> x e. ( Base ` R ) ) |
| 61 |
|
simplr |
|- ( ( ( ( ( ( ( ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) /\ a e. ( Base ` Q ) ) /\ b e. ( Base ` Q ) ) /\ ( a ( .r ` Q ) b ) = ( 0g ` Q ) ) /\ x e. ( Base ` R ) ) /\ a = [ x ] ( R ~QG I ) ) /\ y e. ( Base ` R ) ) /\ b = [ y ] ( R ~QG I ) ) -> y e. ( Base ` R ) ) |
| 62 |
|
simp-8l |
|- ( ( ( ( ( ( ( ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) /\ a e. ( Base ` Q ) ) /\ b e. ( Base ` Q ) ) /\ ( a ( .r ` Q ) b ) = ( 0g ` Q ) ) /\ x e. ( Base ` R ) ) /\ a = [ x ] ( R ~QG I ) ) /\ y e. ( Base ` R ) ) /\ b = [ y ] ( R ~QG I ) ) -> R e. CRing ) |
| 63 |
62 39
|
syl |
|- ( ( ( ( ( ( ( ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) /\ a e. ( Base ` Q ) ) /\ b e. ( Base ` Q ) ) /\ ( a ( .r ` Q ) b ) = ( 0g ` Q ) ) /\ x e. ( Base ` R ) ) /\ a = [ x ] ( R ~QG I ) ) /\ y e. ( Base ` R ) ) /\ b = [ y ] ( R ~QG I ) ) -> R e. Grp ) |
| 64 |
4
|
ad7antr |
|- ( ( ( ( ( ( ( ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) /\ a e. ( Base ` Q ) ) /\ b e. ( Base ` Q ) ) /\ ( a ( .r ` Q ) b ) = ( 0g ` Q ) ) /\ x e. ( Base ` R ) ) /\ a = [ x ] ( R ~QG I ) ) /\ y e. ( Base ` R ) ) /\ b = [ y ] ( R ~QG I ) ) -> I e. ( LIdeal ` R ) ) |
| 65 |
62 64 26
|
syl2anc |
|- ( ( ( ( ( ( ( ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) /\ a e. ( Base ` Q ) ) /\ b e. ( Base ` Q ) ) /\ ( a ( .r ` Q ) b ) = ( 0g ` Q ) ) /\ x e. ( Base ` R ) ) /\ a = [ x ] ( R ~QG I ) ) /\ y e. ( Base ` R ) ) /\ b = [ y ] ( R ~QG I ) ) -> I e. ( SubGrp ` R ) ) |
| 66 |
1
|
a1i |
|- ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) -> Q = ( R /s ( R ~QG I ) ) ) |
| 67 |
|
eqidd |
|- ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) -> ( Base ` R ) = ( Base ` R ) ) |
| 68 |
27 28
|
eqger |
|- ( I e. ( SubGrp ` R ) -> ( R ~QG I ) Er ( Base ` R ) ) |
| 69 |
26 68
|
syl |
|- ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) -> ( R ~QG I ) Er ( Base ` R ) ) |
| 70 |
|
simpl |
|- ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) -> R e. CRing ) |
| 71 |
27 28 12 34
|
2idlcpbl |
|- ( ( R e. Ring /\ I e. ( 2Ideal ` R ) ) -> ( ( g ( R ~QG I ) e /\ h ( R ~QG I ) f ) -> ( g ( .r ` R ) h ) ( R ~QG I ) ( e ( .r ` R ) f ) ) ) |
| 72 |
2 10 71
|
syl2an2r |
|- ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) -> ( ( g ( R ~QG I ) e /\ h ( R ~QG I ) f ) -> ( g ( .r ` R ) h ) ( R ~QG I ) ( e ( .r ` R ) f ) ) ) |
| 73 |
2
|
ad2antrr |
|- ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ ( e e. ( Base ` R ) /\ f e. ( Base ` R ) ) ) -> R e. Ring ) |
| 74 |
|
simprl |
|- ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ ( e e. ( Base ` R ) /\ f e. ( Base ` R ) ) ) -> e e. ( Base ` R ) ) |
| 75 |
|
simprr |
|- ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ ( e e. ( Base ` R ) /\ f e. ( Base ` R ) ) ) -> f e. ( Base ` R ) ) |
| 76 |
27 34
|
ringcl |
|- ( ( R e. Ring /\ e e. ( Base ` R ) /\ f e. ( Base ` R ) ) -> ( e ( .r ` R ) f ) e. ( Base ` R ) ) |
| 77 |
73 74 75 76
|
syl3anc |
|- ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ ( e e. ( Base ` R ) /\ f e. ( Base ` R ) ) ) -> ( e ( .r ` R ) f ) e. ( Base ` R ) ) |
| 78 |
|
eqid |
|- ( .r ` Q ) = ( .r ` Q ) |
| 79 |
66 67 69 70 72 77 34 78
|
qusmulval |
|- ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( [ x ] ( R ~QG I ) ( .r ` Q ) [ y ] ( R ~QG I ) ) = [ ( x ( .r ` R ) y ) ] ( R ~QG I ) ) |
| 80 |
62 64 60 61 79
|
syl211anc |
|- ( ( ( ( ( ( ( ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) /\ a e. ( Base ` Q ) ) /\ b e. ( Base ` Q ) ) /\ ( a ( .r ` Q ) b ) = ( 0g ` Q ) ) /\ x e. ( Base ` R ) ) /\ a = [ x ] ( R ~QG I ) ) /\ y e. ( Base ` R ) ) /\ b = [ y ] ( R ~QG I ) ) -> ( [ x ] ( R ~QG I ) ( .r ` Q ) [ y ] ( R ~QG I ) ) = [ ( x ( .r ` R ) y ) ] ( R ~QG I ) ) |
| 81 |
|
simpr |
|- ( ( ( ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) /\ a e. ( Base ` Q ) ) /\ b e. ( Base ` Q ) ) /\ ( a ( .r ` Q ) b ) = ( 0g ` Q ) ) -> ( a ( .r ` Q ) b ) = ( 0g ` Q ) ) |
| 82 |
81
|
ad4antr |
|- ( ( ( ( ( ( ( ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) /\ a e. ( Base ` Q ) ) /\ b e. ( Base ` Q ) ) /\ ( a ( .r ` Q ) b ) = ( 0g ` Q ) ) /\ x e. ( Base ` R ) ) /\ a = [ x ] ( R ~QG I ) ) /\ y e. ( Base ` R ) ) /\ b = [ y ] ( R ~QG I ) ) -> ( a ( .r ` Q ) b ) = ( 0g ` Q ) ) |
| 83 |
|
simpllr |
|- ( ( ( ( ( ( ( ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) /\ a e. ( Base ` Q ) ) /\ b e. ( Base ` Q ) ) /\ ( a ( .r ` Q ) b ) = ( 0g ` Q ) ) /\ x e. ( Base ` R ) ) /\ a = [ x ] ( R ~QG I ) ) /\ y e. ( Base ` R ) ) /\ b = [ y ] ( R ~QG I ) ) -> a = [ x ] ( R ~QG I ) ) |
| 84 |
|
simpr |
|- ( ( ( ( ( ( ( ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) /\ a e. ( Base ` Q ) ) /\ b e. ( Base ` Q ) ) /\ ( a ( .r ` Q ) b ) = ( 0g ` Q ) ) /\ x e. ( Base ` R ) ) /\ a = [ x ] ( R ~QG I ) ) /\ y e. ( Base ` R ) ) /\ b = [ y ] ( R ~QG I ) ) -> b = [ y ] ( R ~QG I ) ) |
| 85 |
83 84
|
oveq12d |
|- ( ( ( ( ( ( ( ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) /\ a e. ( Base ` Q ) ) /\ b e. ( Base ` Q ) ) /\ ( a ( .r ` Q ) b ) = ( 0g ` Q ) ) /\ x e. ( Base ` R ) ) /\ a = [ x ] ( R ~QG I ) ) /\ y e. ( Base ` R ) ) /\ b = [ y ] ( R ~QG I ) ) -> ( a ( .r ` Q ) b ) = ( [ x ] ( R ~QG I ) ( .r ` Q ) [ y ] ( R ~QG I ) ) ) |
| 86 |
62 64 31
|
syl2anc |
|- ( ( ( ( ( ( ( ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) /\ a e. ( Base ` Q ) ) /\ b e. ( Base ` Q ) ) /\ ( a ( .r ` Q ) b ) = ( 0g ` Q ) ) /\ x e. ( Base ` R ) ) /\ a = [ x ] ( R ~QG I ) ) /\ y e. ( Base ` R ) ) /\ b = [ y ] ( R ~QG I ) ) -> ( 0g ` Q ) = I ) |
| 87 |
82 85 86
|
3eqtr3d |
|- ( ( ( ( ( ( ( ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) /\ a e. ( Base ` Q ) ) /\ b e. ( Base ` Q ) ) /\ ( a ( .r ` Q ) b ) = ( 0g ` Q ) ) /\ x e. ( Base ` R ) ) /\ a = [ x ] ( R ~QG I ) ) /\ y e. ( Base ` R ) ) /\ b = [ y ] ( R ~QG I ) ) -> ( [ x ] ( R ~QG I ) ( .r ` Q ) [ y ] ( R ~QG I ) ) = I ) |
| 88 |
80 87
|
eqtr3d |
|- ( ( ( ( ( ( ( ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) /\ a e. ( Base ` Q ) ) /\ b e. ( Base ` Q ) ) /\ ( a ( .r ` Q ) b ) = ( 0g ` Q ) ) /\ x e. ( Base ` R ) ) /\ a = [ x ] ( R ~QG I ) ) /\ y e. ( Base ` R ) ) /\ b = [ y ] ( R ~QG I ) ) -> [ ( x ( .r ` R ) y ) ] ( R ~QG I ) = I ) |
| 89 |
28
|
eqg0el |
|- ( ( R e. Grp /\ I e. ( SubGrp ` R ) ) -> ( [ ( x ( .r ` R ) y ) ] ( R ~QG I ) = I <-> ( x ( .r ` R ) y ) e. I ) ) |
| 90 |
89
|
biimpa |
|- ( ( ( R e. Grp /\ I e. ( SubGrp ` R ) ) /\ [ ( x ( .r ` R ) y ) ] ( R ~QG I ) = I ) -> ( x ( .r ` R ) y ) e. I ) |
| 91 |
63 65 88 90
|
syl21anc |
|- ( ( ( ( ( ( ( ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) /\ a e. ( Base ` Q ) ) /\ b e. ( Base ` Q ) ) /\ ( a ( .r ` Q ) b ) = ( 0g ` Q ) ) /\ x e. ( Base ` R ) ) /\ a = [ x ] ( R ~QG I ) ) /\ y e. ( Base ` R ) ) /\ b = [ y ] ( R ~QG I ) ) -> ( x ( .r ` R ) y ) e. I ) |
| 92 |
|
rsp2 |
|- ( A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) e. I -> ( x e. I \/ y e. I ) ) -> ( ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( ( x ( .r ` R ) y ) e. I -> ( x e. I \/ y e. I ) ) ) ) |
| 93 |
92
|
impl |
|- ( ( ( A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) e. I -> ( x e. I \/ y e. I ) ) /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) -> ( ( x ( .r ` R ) y ) e. I -> ( x e. I \/ y e. I ) ) ) |
| 94 |
93
|
imp |
|- ( ( ( ( A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) e. I -> ( x e. I \/ y e. I ) ) /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) /\ ( x ( .r ` R ) y ) e. I ) -> ( x e. I \/ y e. I ) ) |
| 95 |
59 60 61 91 94
|
syl1111anc |
|- ( ( ( ( ( ( ( ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) /\ a e. ( Base ` Q ) ) /\ b e. ( Base ` Q ) ) /\ ( a ( .r ` Q ) b ) = ( 0g ` Q ) ) /\ x e. ( Base ` R ) ) /\ a = [ x ] ( R ~QG I ) ) /\ y e. ( Base ` R ) ) /\ b = [ y ] ( R ~QG I ) ) -> ( x e. I \/ y e. I ) ) |
| 96 |
86
|
eqeq2d |
|- ( ( ( ( ( ( ( ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) /\ a e. ( Base ` Q ) ) /\ b e. ( Base ` Q ) ) /\ ( a ( .r ` Q ) b ) = ( 0g ` Q ) ) /\ x e. ( Base ` R ) ) /\ a = [ x ] ( R ~QG I ) ) /\ y e. ( Base ` R ) ) /\ b = [ y ] ( R ~QG I ) ) -> ( a = ( 0g ` Q ) <-> a = I ) ) |
| 97 |
83
|
eqeq1d |
|- ( ( ( ( ( ( ( ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) /\ a e. ( Base ` Q ) ) /\ b e. ( Base ` Q ) ) /\ ( a ( .r ` Q ) b ) = ( 0g ` Q ) ) /\ x e. ( Base ` R ) ) /\ a = [ x ] ( R ~QG I ) ) /\ y e. ( Base ` R ) ) /\ b = [ y ] ( R ~QG I ) ) -> ( a = I <-> [ x ] ( R ~QG I ) = I ) ) |
| 98 |
28
|
eqg0el |
|- ( ( R e. Grp /\ I e. ( SubGrp ` R ) ) -> ( [ x ] ( R ~QG I ) = I <-> x e. I ) ) |
| 99 |
63 65 98
|
syl2anc |
|- ( ( ( ( ( ( ( ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) /\ a e. ( Base ` Q ) ) /\ b e. ( Base ` Q ) ) /\ ( a ( .r ` Q ) b ) = ( 0g ` Q ) ) /\ x e. ( Base ` R ) ) /\ a = [ x ] ( R ~QG I ) ) /\ y e. ( Base ` R ) ) /\ b = [ y ] ( R ~QG I ) ) -> ( [ x ] ( R ~QG I ) = I <-> x e. I ) ) |
| 100 |
96 97 99
|
3bitrrd |
|- ( ( ( ( ( ( ( ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) /\ a e. ( Base ` Q ) ) /\ b e. ( Base ` Q ) ) /\ ( a ( .r ` Q ) b ) = ( 0g ` Q ) ) /\ x e. ( Base ` R ) ) /\ a = [ x ] ( R ~QG I ) ) /\ y e. ( Base ` R ) ) /\ b = [ y ] ( R ~QG I ) ) -> ( x e. I <-> a = ( 0g ` Q ) ) ) |
| 101 |
86
|
eqeq2d |
|- ( ( ( ( ( ( ( ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) /\ a e. ( Base ` Q ) ) /\ b e. ( Base ` Q ) ) /\ ( a ( .r ` Q ) b ) = ( 0g ` Q ) ) /\ x e. ( Base ` R ) ) /\ a = [ x ] ( R ~QG I ) ) /\ y e. ( Base ` R ) ) /\ b = [ y ] ( R ~QG I ) ) -> ( b = ( 0g ` Q ) <-> b = I ) ) |
| 102 |
84
|
eqeq1d |
|- ( ( ( ( ( ( ( ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) /\ a e. ( Base ` Q ) ) /\ b e. ( Base ` Q ) ) /\ ( a ( .r ` Q ) b ) = ( 0g ` Q ) ) /\ x e. ( Base ` R ) ) /\ a = [ x ] ( R ~QG I ) ) /\ y e. ( Base ` R ) ) /\ b = [ y ] ( R ~QG I ) ) -> ( b = I <-> [ y ] ( R ~QG I ) = I ) ) |
| 103 |
28
|
eqg0el |
|- ( ( R e. Grp /\ I e. ( SubGrp ` R ) ) -> ( [ y ] ( R ~QG I ) = I <-> y e. I ) ) |
| 104 |
63 65 103
|
syl2anc |
|- ( ( ( ( ( ( ( ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) /\ a e. ( Base ` Q ) ) /\ b e. ( Base ` Q ) ) /\ ( a ( .r ` Q ) b ) = ( 0g ` Q ) ) /\ x e. ( Base ` R ) ) /\ a = [ x ] ( R ~QG I ) ) /\ y e. ( Base ` R ) ) /\ b = [ y ] ( R ~QG I ) ) -> ( [ y ] ( R ~QG I ) = I <-> y e. I ) ) |
| 105 |
101 102 104
|
3bitrrd |
|- ( ( ( ( ( ( ( ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) /\ a e. ( Base ` Q ) ) /\ b e. ( Base ` Q ) ) /\ ( a ( .r ` Q ) b ) = ( 0g ` Q ) ) /\ x e. ( Base ` R ) ) /\ a = [ x ] ( R ~QG I ) ) /\ y e. ( Base ` R ) ) /\ b = [ y ] ( R ~QG I ) ) -> ( y e. I <-> b = ( 0g ` Q ) ) ) |
| 106 |
100 105
|
orbi12d |
|- ( ( ( ( ( ( ( ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) /\ a e. ( Base ` Q ) ) /\ b e. ( Base ` Q ) ) /\ ( a ( .r ` Q ) b ) = ( 0g ` Q ) ) /\ x e. ( Base ` R ) ) /\ a = [ x ] ( R ~QG I ) ) /\ y e. ( Base ` R ) ) /\ b = [ y ] ( R ~QG I ) ) -> ( ( x e. I \/ y e. I ) <-> ( a = ( 0g ` Q ) \/ b = ( 0g ` Q ) ) ) ) |
| 107 |
95 106
|
mpbid |
|- ( ( ( ( ( ( ( ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) /\ a e. ( Base ` Q ) ) /\ b e. ( Base ` Q ) ) /\ ( a ( .r ` Q ) b ) = ( 0g ` Q ) ) /\ x e. ( Base ` R ) ) /\ a = [ x ] ( R ~QG I ) ) /\ y e. ( Base ` R ) ) /\ b = [ y ] ( R ~QG I ) ) -> ( a = ( 0g ` Q ) \/ b = ( 0g ` Q ) ) ) |
| 108 |
|
simplr |
|- ( ( ( ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) /\ a e. ( Base ` Q ) ) /\ b e. ( Base ` Q ) ) /\ ( a ( .r ` Q ) b ) = ( 0g ` Q ) ) -> b e. ( Base ` Q ) ) |
| 109 |
1
|
a1i |
|- ( R e. CRing -> Q = ( R /s ( R ~QG I ) ) ) |
| 110 |
|
eqidd |
|- ( R e. CRing -> ( Base ` R ) = ( Base ` R ) ) |
| 111 |
|
ovexd |
|- ( R e. CRing -> ( R ~QG I ) e. _V ) |
| 112 |
|
id |
|- ( R e. CRing -> R e. CRing ) |
| 113 |
109 110 111 112
|
qusbas |
|- ( R e. CRing -> ( ( Base ` R ) /. ( R ~QG I ) ) = ( Base ` Q ) ) |
| 114 |
113
|
ad4antr |
|- ( ( ( ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) /\ a e. ( Base ` Q ) ) /\ b e. ( Base ` Q ) ) /\ ( a ( .r ` Q ) b ) = ( 0g ` Q ) ) -> ( ( Base ` R ) /. ( R ~QG I ) ) = ( Base ` Q ) ) |
| 115 |
108 114
|
eleqtrrd |
|- ( ( ( ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) /\ a e. ( Base ` Q ) ) /\ b e. ( Base ` Q ) ) /\ ( a ( .r ` Q ) b ) = ( 0g ` Q ) ) -> b e. ( ( Base ` R ) /. ( R ~QG I ) ) ) |
| 116 |
115
|
ad2antrr |
|- ( ( ( ( ( ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) /\ a e. ( Base ` Q ) ) /\ b e. ( Base ` Q ) ) /\ ( a ( .r ` Q ) b ) = ( 0g ` Q ) ) /\ x e. ( Base ` R ) ) /\ a = [ x ] ( R ~QG I ) ) -> b e. ( ( Base ` R ) /. ( R ~QG I ) ) ) |
| 117 |
|
elqsi |
|- ( b e. ( ( Base ` R ) /. ( R ~QG I ) ) -> E. y e. ( Base ` R ) b = [ y ] ( R ~QG I ) ) |
| 118 |
116 117
|
syl |
|- ( ( ( ( ( ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) /\ a e. ( Base ` Q ) ) /\ b e. ( Base ` Q ) ) /\ ( a ( .r ` Q ) b ) = ( 0g ` Q ) ) /\ x e. ( Base ` R ) ) /\ a = [ x ] ( R ~QG I ) ) -> E. y e. ( Base ` R ) b = [ y ] ( R ~QG I ) ) |
| 119 |
107 118
|
r19.29a |
|- ( ( ( ( ( ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) /\ a e. ( Base ` Q ) ) /\ b e. ( Base ` Q ) ) /\ ( a ( .r ` Q ) b ) = ( 0g ` Q ) ) /\ x e. ( Base ` R ) ) /\ a = [ x ] ( R ~QG I ) ) -> ( a = ( 0g ` Q ) \/ b = ( 0g ` Q ) ) ) |
| 120 |
|
simpllr |
|- ( ( ( ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) /\ a e. ( Base ` Q ) ) /\ b e. ( Base ` Q ) ) /\ ( a ( .r ` Q ) b ) = ( 0g ` Q ) ) -> a e. ( Base ` Q ) ) |
| 121 |
120 114
|
eleqtrrd |
|- ( ( ( ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) /\ a e. ( Base ` Q ) ) /\ b e. ( Base ` Q ) ) /\ ( a ( .r ` Q ) b ) = ( 0g ` Q ) ) -> a e. ( ( Base ` R ) /. ( R ~QG I ) ) ) |
| 122 |
|
elqsi |
|- ( a e. ( ( Base ` R ) /. ( R ~QG I ) ) -> E. x e. ( Base ` R ) a = [ x ] ( R ~QG I ) ) |
| 123 |
121 122
|
syl |
|- ( ( ( ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) /\ a e. ( Base ` Q ) ) /\ b e. ( Base ` Q ) ) /\ ( a ( .r ` Q ) b ) = ( 0g ` Q ) ) -> E. x e. ( Base ` R ) a = [ x ] ( R ~QG I ) ) |
| 124 |
119 123
|
r19.29a |
|- ( ( ( ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) /\ a e. ( Base ` Q ) ) /\ b e. ( Base ` Q ) ) /\ ( a ( .r ` Q ) b ) = ( 0g ` Q ) ) -> ( a = ( 0g ` Q ) \/ b = ( 0g ` Q ) ) ) |
| 125 |
124
|
ex |
|- ( ( ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) /\ a e. ( Base ` Q ) ) /\ b e. ( Base ` Q ) ) -> ( ( a ( .r ` Q ) b ) = ( 0g ` Q ) -> ( a = ( 0g ` Q ) \/ b = ( 0g ` Q ) ) ) ) |
| 126 |
125
|
anasss |
|- ( ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) /\ ( a e. ( Base ` Q ) /\ b e. ( Base ` Q ) ) ) -> ( ( a ( .r ` Q ) b ) = ( 0g ` Q ) -> ( a = ( 0g ` Q ) \/ b = ( 0g ` Q ) ) ) ) |
| 127 |
126
|
ralrimivva |
|- ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) -> A. a e. ( Base ` Q ) A. b e. ( Base ` Q ) ( ( a ( .r ` Q ) b ) = ( 0g ` Q ) -> ( a = ( 0g ` Q ) \/ b = ( 0g ` Q ) ) ) ) |
| 128 |
15 78 16
|
isdomn |
|- ( Q e. Domn <-> ( Q e. NzRing /\ A. a e. ( Base ` Q ) A. b e. ( Base ` Q ) ( ( a ( .r ` Q ) b ) = ( 0g ` Q ) -> ( a = ( 0g ` Q ) \/ b = ( 0g ` Q ) ) ) ) ) |
| 129 |
57 127 128
|
sylanbrc |
|- ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) -> Q e. Domn ) |
| 130 |
|
isidom |
|- ( Q e. IDomn <-> ( Q e. CRing /\ Q e. Domn ) ) |
| 131 |
7 129 130
|
sylanbrc |
|- ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) -> Q e. IDomn ) |