Step |
Hyp |
Ref |
Expression |
1 |
|
qustrivr.1 |
|- B = ( Base ` G ) |
2 |
|
qustrivr.2 |
|- Q = ( G /s ( G ~QG H ) ) |
3 |
2
|
a1i |
|- ( ( G e. Grp /\ H e. ( SubGrp ` G ) ) -> Q = ( G /s ( G ~QG H ) ) ) |
4 |
1
|
a1i |
|- ( ( G e. Grp /\ H e. ( SubGrp ` G ) ) -> B = ( Base ` G ) ) |
5 |
|
ovexd |
|- ( ( G e. Grp /\ H e. ( SubGrp ` G ) ) -> ( G ~QG H ) e. _V ) |
6 |
|
simpl |
|- ( ( G e. Grp /\ H e. ( SubGrp ` G ) ) -> G e. Grp ) |
7 |
3 4 5 6
|
qusbas |
|- ( ( G e. Grp /\ H e. ( SubGrp ` G ) ) -> ( B /. ( G ~QG H ) ) = ( Base ` Q ) ) |
8 |
7
|
3adant3 |
|- ( ( G e. Grp /\ H e. ( SubGrp ` G ) /\ ( Base ` Q ) = { H } ) -> ( B /. ( G ~QG H ) ) = ( Base ` Q ) ) |
9 |
|
simp3 |
|- ( ( G e. Grp /\ H e. ( SubGrp ` G ) /\ ( Base ` Q ) = { H } ) -> ( Base ` Q ) = { H } ) |
10 |
8 9
|
eqtrd |
|- ( ( G e. Grp /\ H e. ( SubGrp ` G ) /\ ( Base ` Q ) = { H } ) -> ( B /. ( G ~QG H ) ) = { H } ) |
11 |
10
|
unieqd |
|- ( ( G e. Grp /\ H e. ( SubGrp ` G ) /\ ( Base ` Q ) = { H } ) -> U. ( B /. ( G ~QG H ) ) = U. { H } ) |
12 |
|
eqid |
|- ( G ~QG H ) = ( G ~QG H ) |
13 |
1 12
|
eqger |
|- ( H e. ( SubGrp ` G ) -> ( G ~QG H ) Er B ) |
14 |
13
|
adantl |
|- ( ( G e. Grp /\ H e. ( SubGrp ` G ) ) -> ( G ~QG H ) Er B ) |
15 |
14 5
|
uniqs2 |
|- ( ( G e. Grp /\ H e. ( SubGrp ` G ) ) -> U. ( B /. ( G ~QG H ) ) = B ) |
16 |
15
|
3adant3 |
|- ( ( G e. Grp /\ H e. ( SubGrp ` G ) /\ ( Base ` Q ) = { H } ) -> U. ( B /. ( G ~QG H ) ) = B ) |
17 |
|
unisng |
|- ( H e. ( SubGrp ` G ) -> U. { H } = H ) |
18 |
17
|
3ad2ant2 |
|- ( ( G e. Grp /\ H e. ( SubGrp ` G ) /\ ( Base ` Q ) = { H } ) -> U. { H } = H ) |
19 |
11 16 18
|
3eqtr3rd |
|- ( ( G e. Grp /\ H e. ( SubGrp ` G ) /\ ( Base ` Q ) = { H } ) -> H = B ) |