Metamath Proof Explorer


Theorem qustriv

Description: The quotient of a group G by itself is trivial. (Contributed by Thierry Arnoux, 15-Jan-2024)

Ref Expression
Hypotheses qustriv.1
|- B = ( Base ` G )
qustriv.2
|- Q = ( G /s ( G ~QG B ) )
Assertion qustriv
|- ( G e. Grp -> ( Base ` Q ) = { B } )

Proof

Step Hyp Ref Expression
1 qustriv.1
 |-  B = ( Base ` G )
2 qustriv.2
 |-  Q = ( G /s ( G ~QG B ) )
3 1 qusxpid
 |-  ( G e. Grp -> ( G ~QG B ) = ( B X. B ) )
4 3 qseq2d
 |-  ( G e. Grp -> ( B /. ( G ~QG B ) ) = ( B /. ( B X. B ) ) )
5 2 a1i
 |-  ( G e. Grp -> Q = ( G /s ( G ~QG B ) ) )
6 1 a1i
 |-  ( G e. Grp -> B = ( Base ` G ) )
7 ovexd
 |-  ( G e. Grp -> ( G ~QG B ) e. _V )
8 id
 |-  ( G e. Grp -> G e. Grp )
9 5 6 7 8 qusbas
 |-  ( G e. Grp -> ( B /. ( G ~QG B ) ) = ( Base ` Q ) )
10 1 grpbn0
 |-  ( G e. Grp -> B =/= (/) )
11 qsxpid
 |-  ( B =/= (/) -> ( B /. ( B X. B ) ) = { B } )
12 10 11 syl
 |-  ( G e. Grp -> ( B /. ( B X. B ) ) = { B } )
13 4 9 12 3eqtr3d
 |-  ( G e. Grp -> ( Base ` Q ) = { B } )