Step |
Hyp |
Ref |
Expression |
1 |
|
qustriv.1 |
|- B = ( Base ` G ) |
2 |
|
qustriv.2 |
|- Q = ( G /s ( G ~QG B ) ) |
3 |
1
|
qusxpid |
|- ( G e. Grp -> ( G ~QG B ) = ( B X. B ) ) |
4 |
3
|
qseq2d |
|- ( G e. Grp -> ( B /. ( G ~QG B ) ) = ( B /. ( B X. B ) ) ) |
5 |
2
|
a1i |
|- ( G e. Grp -> Q = ( G /s ( G ~QG B ) ) ) |
6 |
1
|
a1i |
|- ( G e. Grp -> B = ( Base ` G ) ) |
7 |
|
ovexd |
|- ( G e. Grp -> ( G ~QG B ) e. _V ) |
8 |
|
id |
|- ( G e. Grp -> G e. Grp ) |
9 |
5 6 7 8
|
qusbas |
|- ( G e. Grp -> ( B /. ( G ~QG B ) ) = ( Base ` Q ) ) |
10 |
1
|
grpbn0 |
|- ( G e. Grp -> B =/= (/) ) |
11 |
|
qsxpid |
|- ( B =/= (/) -> ( B /. ( B X. B ) ) = { B } ) |
12 |
10 11
|
syl |
|- ( G e. Grp -> ( B /. ( B X. B ) ) = { B } ) |
13 |
4 9 12
|
3eqtr3d |
|- ( G e. Grp -> ( Base ` Q ) = { B } ) |