Metamath Proof Explorer


Theorem qsxpid

Description: The quotient set of a cartesian product is trivial. (Contributed by Thierry Arnoux, 16-Jan-2024)

Ref Expression
Assertion qsxpid
|- ( A =/= (/) -> ( A /. ( A X. A ) ) = { A } )

Proof

Step Hyp Ref Expression
1 simpr
 |-  ( ( x e. A /\ y = [ x ] ( A X. A ) ) -> y = [ x ] ( A X. A ) )
2 ecxpid
 |-  ( x e. A -> [ x ] ( A X. A ) = A )
3 2 adantr
 |-  ( ( x e. A /\ y = [ x ] ( A X. A ) ) -> [ x ] ( A X. A ) = A )
4 1 3 eqtrd
 |-  ( ( x e. A /\ y = [ x ] ( A X. A ) ) -> y = A )
5 4 rexlimiva
 |-  ( E. x e. A y = [ x ] ( A X. A ) -> y = A )
6 5 adantl
 |-  ( ( A =/= (/) /\ E. x e. A y = [ x ] ( A X. A ) ) -> y = A )
7 n0
 |-  ( A =/= (/) <-> E. x x e. A )
8 7 biimpi
 |-  ( A =/= (/) -> E. x x e. A )
9 simpl
 |-  ( ( y = A /\ x e. A ) -> y = A )
10 2 adantl
 |-  ( ( y = A /\ x e. A ) -> [ x ] ( A X. A ) = A )
11 9 10 eqtr4d
 |-  ( ( y = A /\ x e. A ) -> y = [ x ] ( A X. A ) )
12 11 ex
 |-  ( y = A -> ( x e. A -> y = [ x ] ( A X. A ) ) )
13 12 ancld
 |-  ( y = A -> ( x e. A -> ( x e. A /\ y = [ x ] ( A X. A ) ) ) )
14 13 eximdv
 |-  ( y = A -> ( E. x x e. A -> E. x ( x e. A /\ y = [ x ] ( A X. A ) ) ) )
15 8 14 mpan9
 |-  ( ( A =/= (/) /\ y = A ) -> E. x ( x e. A /\ y = [ x ] ( A X. A ) ) )
16 df-rex
 |-  ( E. x e. A y = [ x ] ( A X. A ) <-> E. x ( x e. A /\ y = [ x ] ( A X. A ) ) )
17 15 16 sylibr
 |-  ( ( A =/= (/) /\ y = A ) -> E. x e. A y = [ x ] ( A X. A ) )
18 6 17 impbida
 |-  ( A =/= (/) -> ( E. x e. A y = [ x ] ( A X. A ) <-> y = A ) )
19 vex
 |-  y e. _V
20 19 elqs
 |-  ( y e. ( A /. ( A X. A ) ) <-> E. x e. A y = [ x ] ( A X. A ) )
21 velsn
 |-  ( y e. { A } <-> y = A )
22 18 20 21 3bitr4g
 |-  ( A =/= (/) -> ( y e. ( A /. ( A X. A ) ) <-> y e. { A } ) )
23 22 eqrdv
 |-  ( A =/= (/) -> ( A /. ( A X. A ) ) = { A } )