Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|- ( ( x e. A /\ y = [ x ] ( A X. A ) ) -> y = [ x ] ( A X. A ) ) |
2 |
|
ecxpid |
|- ( x e. A -> [ x ] ( A X. A ) = A ) |
3 |
2
|
adantr |
|- ( ( x e. A /\ y = [ x ] ( A X. A ) ) -> [ x ] ( A X. A ) = A ) |
4 |
1 3
|
eqtrd |
|- ( ( x e. A /\ y = [ x ] ( A X. A ) ) -> y = A ) |
5 |
4
|
rexlimiva |
|- ( E. x e. A y = [ x ] ( A X. A ) -> y = A ) |
6 |
5
|
adantl |
|- ( ( A =/= (/) /\ E. x e. A y = [ x ] ( A X. A ) ) -> y = A ) |
7 |
|
n0 |
|- ( A =/= (/) <-> E. x x e. A ) |
8 |
7
|
biimpi |
|- ( A =/= (/) -> E. x x e. A ) |
9 |
|
simpl |
|- ( ( y = A /\ x e. A ) -> y = A ) |
10 |
2
|
adantl |
|- ( ( y = A /\ x e. A ) -> [ x ] ( A X. A ) = A ) |
11 |
9 10
|
eqtr4d |
|- ( ( y = A /\ x e. A ) -> y = [ x ] ( A X. A ) ) |
12 |
11
|
ex |
|- ( y = A -> ( x e. A -> y = [ x ] ( A X. A ) ) ) |
13 |
12
|
ancld |
|- ( y = A -> ( x e. A -> ( x e. A /\ y = [ x ] ( A X. A ) ) ) ) |
14 |
13
|
eximdv |
|- ( y = A -> ( E. x x e. A -> E. x ( x e. A /\ y = [ x ] ( A X. A ) ) ) ) |
15 |
8 14
|
mpan9 |
|- ( ( A =/= (/) /\ y = A ) -> E. x ( x e. A /\ y = [ x ] ( A X. A ) ) ) |
16 |
|
df-rex |
|- ( E. x e. A y = [ x ] ( A X. A ) <-> E. x ( x e. A /\ y = [ x ] ( A X. A ) ) ) |
17 |
15 16
|
sylibr |
|- ( ( A =/= (/) /\ y = A ) -> E. x e. A y = [ x ] ( A X. A ) ) |
18 |
6 17
|
impbida |
|- ( A =/= (/) -> ( E. x e. A y = [ x ] ( A X. A ) <-> y = A ) ) |
19 |
|
vex |
|- y e. _V |
20 |
19
|
elqs |
|- ( y e. ( A /. ( A X. A ) ) <-> E. x e. A y = [ x ] ( A X. A ) ) |
21 |
|
velsn |
|- ( y e. { A } <-> y = A ) |
22 |
18 20 21
|
3bitr4g |
|- ( A =/= (/) -> ( y e. ( A /. ( A X. A ) ) <-> y e. { A } ) ) |
23 |
22
|
eqrdv |
|- ( A =/= (/) -> ( A /. ( A X. A ) ) = { A } ) |