Metamath Proof Explorer


Theorem ecxpid

Description: The equivalence class of a cartesian product is the whole set. (Contributed by Thierry Arnoux, 15-Jan-2024)

Ref Expression
Assertion ecxpid
|- ( X e. A -> [ X ] ( A X. A ) = A )

Proof

Step Hyp Ref Expression
1 vex
 |-  x e. _V
2 elecg
 |-  ( ( x e. _V /\ X e. A ) -> ( x e. [ X ] ( A X. A ) <-> X ( A X. A ) x ) )
3 1 2 mpan
 |-  ( X e. A -> ( x e. [ X ] ( A X. A ) <-> X ( A X. A ) x ) )
4 brxp
 |-  ( X ( A X. A ) x <-> ( X e. A /\ x e. A ) )
5 4 baib
 |-  ( X e. A -> ( X ( A X. A ) x <-> x e. A ) )
6 3 5 bitrd
 |-  ( X e. A -> ( x e. [ X ] ( A X. A ) <-> x e. A ) )
7 6 eqrdv
 |-  ( X e. A -> [ X ] ( A X. A ) = A )