Description: The equivalence class of a cartesian product is the whole set. (Contributed by Thierry Arnoux, 15-Jan-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | ecxpid | |- ( X e. A -> [ X ] ( A X. A ) = A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex | |- x e. _V |
|
2 | elecg | |- ( ( x e. _V /\ X e. A ) -> ( x e. [ X ] ( A X. A ) <-> X ( A X. A ) x ) ) |
|
3 | 1 2 | mpan | |- ( X e. A -> ( x e. [ X ] ( A X. A ) <-> X ( A X. A ) x ) ) |
4 | brxp | |- ( X ( A X. A ) x <-> ( X e. A /\ x e. A ) ) |
|
5 | 4 | baib | |- ( X e. A -> ( X ( A X. A ) x <-> x e. A ) ) |
6 | 3 5 | bitrd | |- ( X e. A -> ( x e. [ X ] ( A X. A ) <-> x e. A ) ) |
7 | 6 | eqrdv | |- ( X e. A -> [ X ] ( A X. A ) = A ) |