| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqg0el.1 |
|- .~ = ( G ~QG H ) |
| 2 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 3 |
2 1
|
eqger |
|- ( H e. ( SubGrp ` G ) -> .~ Er ( Base ` G ) ) |
| 4 |
3
|
adantl |
|- ( ( G e. Grp /\ H e. ( SubGrp ` G ) ) -> .~ Er ( Base ` G ) ) |
| 5 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 6 |
2 5
|
grpidcl |
|- ( G e. Grp -> ( 0g ` G ) e. ( Base ` G ) ) |
| 7 |
6
|
adantr |
|- ( ( G e. Grp /\ H e. ( SubGrp ` G ) ) -> ( 0g ` G ) e. ( Base ` G ) ) |
| 8 |
4 7
|
erth |
|- ( ( G e. Grp /\ H e. ( SubGrp ` G ) ) -> ( ( 0g ` G ) .~ X <-> [ ( 0g ` G ) ] .~ = [ X ] .~ ) ) |
| 9 |
2 1 5
|
eqgid |
|- ( H e. ( SubGrp ` G ) -> [ ( 0g ` G ) ] .~ = H ) |
| 10 |
9
|
adantl |
|- ( ( G e. Grp /\ H e. ( SubGrp ` G ) ) -> [ ( 0g ` G ) ] .~ = H ) |
| 11 |
10
|
eqeq1d |
|- ( ( G e. Grp /\ H e. ( SubGrp ` G ) ) -> ( [ ( 0g ` G ) ] .~ = [ X ] .~ <-> H = [ X ] .~ ) ) |
| 12 |
|
eqcom |
|- ( H = [ X ] .~ <-> [ X ] .~ = H ) |
| 13 |
12
|
a1i |
|- ( ( G e. Grp /\ H e. ( SubGrp ` G ) ) -> ( H = [ X ] .~ <-> [ X ] .~ = H ) ) |
| 14 |
8 11 13
|
3bitrrd |
|- ( ( G e. Grp /\ H e. ( SubGrp ` G ) ) -> ( [ X ] .~ = H <-> ( 0g ` G ) .~ X ) ) |
| 15 |
|
errel |
|- ( .~ Er ( Base ` G ) -> Rel .~ ) |
| 16 |
|
relelec |
|- ( Rel .~ -> ( X e. [ ( 0g ` G ) ] .~ <-> ( 0g ` G ) .~ X ) ) |
| 17 |
3 15 16
|
3syl |
|- ( H e. ( SubGrp ` G ) -> ( X e. [ ( 0g ` G ) ] .~ <-> ( 0g ` G ) .~ X ) ) |
| 18 |
17
|
adantl |
|- ( ( G e. Grp /\ H e. ( SubGrp ` G ) ) -> ( X e. [ ( 0g ` G ) ] .~ <-> ( 0g ` G ) .~ X ) ) |
| 19 |
10
|
eleq2d |
|- ( ( G e. Grp /\ H e. ( SubGrp ` G ) ) -> ( X e. [ ( 0g ` G ) ] .~ <-> X e. H ) ) |
| 20 |
14 18 19
|
3bitr2d |
|- ( ( G e. Grp /\ H e. ( SubGrp ` G ) ) -> ( [ X ] .~ = H <-> X e. H ) ) |