Metamath Proof Explorer


Theorem qsxpid

Description: The quotient set of a cartesian product is trivial. (Contributed by Thierry Arnoux, 16-Jan-2024)

Ref Expression
Assertion qsxpid A A / A × A = A

Proof

Step Hyp Ref Expression
1 simpr x A y = x A × A y = x A × A
2 ecxpid x A x A × A = A
3 2 adantr x A y = x A × A x A × A = A
4 1 3 eqtrd x A y = x A × A y = A
5 4 rexlimiva x A y = x A × A y = A
6 5 adantl A x A y = x A × A y = A
7 n0 A x x A
8 7 biimpi A x x A
9 simpl y = A x A y = A
10 2 adantl y = A x A x A × A = A
11 9 10 eqtr4d y = A x A y = x A × A
12 11 ex y = A x A y = x A × A
13 12 ancld y = A x A x A y = x A × A
14 13 eximdv y = A x x A x x A y = x A × A
15 8 14 mpan9 A y = A x x A y = x A × A
16 df-rex x A y = x A × A x x A y = x A × A
17 15 16 sylibr A y = A x A y = x A × A
18 6 17 impbida A x A y = x A × A y = A
19 vex y V
20 19 elqs y A / A × A x A y = x A × A
21 velsn y A y = A
22 18 20 21 3bitr4g A y A / A × A y A
23 22 eqrdv A A / A × A = A