Metamath Proof Explorer


Theorem qsxpid

Description: The quotient set of a cartesian product is trivial. (Contributed by Thierry Arnoux, 16-Jan-2024)

Ref Expression
Assertion qsxpid ( 𝐴 ≠ ∅ → ( 𝐴 / ( 𝐴 × 𝐴 ) ) = { 𝐴 } )

Proof

Step Hyp Ref Expression
1 simpr ( ( 𝑥𝐴𝑦 = [ 𝑥 ] ( 𝐴 × 𝐴 ) ) → 𝑦 = [ 𝑥 ] ( 𝐴 × 𝐴 ) )
2 ecxpid ( 𝑥𝐴 → [ 𝑥 ] ( 𝐴 × 𝐴 ) = 𝐴 )
3 2 adantr ( ( 𝑥𝐴𝑦 = [ 𝑥 ] ( 𝐴 × 𝐴 ) ) → [ 𝑥 ] ( 𝐴 × 𝐴 ) = 𝐴 )
4 1 3 eqtrd ( ( 𝑥𝐴𝑦 = [ 𝑥 ] ( 𝐴 × 𝐴 ) ) → 𝑦 = 𝐴 )
5 4 rexlimiva ( ∃ 𝑥𝐴 𝑦 = [ 𝑥 ] ( 𝐴 × 𝐴 ) → 𝑦 = 𝐴 )
6 5 adantl ( ( 𝐴 ≠ ∅ ∧ ∃ 𝑥𝐴 𝑦 = [ 𝑥 ] ( 𝐴 × 𝐴 ) ) → 𝑦 = 𝐴 )
7 n0 ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥𝐴 )
8 7 biimpi ( 𝐴 ≠ ∅ → ∃ 𝑥 𝑥𝐴 )
9 simpl ( ( 𝑦 = 𝐴𝑥𝐴 ) → 𝑦 = 𝐴 )
10 2 adantl ( ( 𝑦 = 𝐴𝑥𝐴 ) → [ 𝑥 ] ( 𝐴 × 𝐴 ) = 𝐴 )
11 9 10 eqtr4d ( ( 𝑦 = 𝐴𝑥𝐴 ) → 𝑦 = [ 𝑥 ] ( 𝐴 × 𝐴 ) )
12 11 ex ( 𝑦 = 𝐴 → ( 𝑥𝐴𝑦 = [ 𝑥 ] ( 𝐴 × 𝐴 ) ) )
13 12 ancld ( 𝑦 = 𝐴 → ( 𝑥𝐴 → ( 𝑥𝐴𝑦 = [ 𝑥 ] ( 𝐴 × 𝐴 ) ) ) )
14 13 eximdv ( 𝑦 = 𝐴 → ( ∃ 𝑥 𝑥𝐴 → ∃ 𝑥 ( 𝑥𝐴𝑦 = [ 𝑥 ] ( 𝐴 × 𝐴 ) ) ) )
15 8 14 mpan9 ( ( 𝐴 ≠ ∅ ∧ 𝑦 = 𝐴 ) → ∃ 𝑥 ( 𝑥𝐴𝑦 = [ 𝑥 ] ( 𝐴 × 𝐴 ) ) )
16 df-rex ( ∃ 𝑥𝐴 𝑦 = [ 𝑥 ] ( 𝐴 × 𝐴 ) ↔ ∃ 𝑥 ( 𝑥𝐴𝑦 = [ 𝑥 ] ( 𝐴 × 𝐴 ) ) )
17 15 16 sylibr ( ( 𝐴 ≠ ∅ ∧ 𝑦 = 𝐴 ) → ∃ 𝑥𝐴 𝑦 = [ 𝑥 ] ( 𝐴 × 𝐴 ) )
18 6 17 impbida ( 𝐴 ≠ ∅ → ( ∃ 𝑥𝐴 𝑦 = [ 𝑥 ] ( 𝐴 × 𝐴 ) ↔ 𝑦 = 𝐴 ) )
19 vex 𝑦 ∈ V
20 19 elqs ( 𝑦 ∈ ( 𝐴 / ( 𝐴 × 𝐴 ) ) ↔ ∃ 𝑥𝐴 𝑦 = [ 𝑥 ] ( 𝐴 × 𝐴 ) )
21 velsn ( 𝑦 ∈ { 𝐴 } ↔ 𝑦 = 𝐴 )
22 18 20 21 3bitr4g ( 𝐴 ≠ ∅ → ( 𝑦 ∈ ( 𝐴 / ( 𝐴 × 𝐴 ) ) ↔ 𝑦 ∈ { 𝐴 } ) )
23 22 eqrdv ( 𝐴 ≠ ∅ → ( 𝐴 / ( 𝐴 × 𝐴 ) ) = { 𝐴 } )