Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = [ 𝑥 ] ( 𝐴 × 𝐴 ) ) → 𝑦 = [ 𝑥 ] ( 𝐴 × 𝐴 ) ) |
2 |
|
ecxpid |
⊢ ( 𝑥 ∈ 𝐴 → [ 𝑥 ] ( 𝐴 × 𝐴 ) = 𝐴 ) |
3 |
2
|
adantr |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = [ 𝑥 ] ( 𝐴 × 𝐴 ) ) → [ 𝑥 ] ( 𝐴 × 𝐴 ) = 𝐴 ) |
4 |
1 3
|
eqtrd |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = [ 𝑥 ] ( 𝐴 × 𝐴 ) ) → 𝑦 = 𝐴 ) |
5 |
4
|
rexlimiva |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑦 = [ 𝑥 ] ( 𝐴 × 𝐴 ) → 𝑦 = 𝐴 ) |
6 |
5
|
adantl |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ 𝐴 𝑦 = [ 𝑥 ] ( 𝐴 × 𝐴 ) ) → 𝑦 = 𝐴 ) |
7 |
|
n0 |
⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐴 ) |
8 |
7
|
biimpi |
⊢ ( 𝐴 ≠ ∅ → ∃ 𝑥 𝑥 ∈ 𝐴 ) |
9 |
|
simpl |
⊢ ( ( 𝑦 = 𝐴 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 = 𝐴 ) |
10 |
2
|
adantl |
⊢ ( ( 𝑦 = 𝐴 ∧ 𝑥 ∈ 𝐴 ) → [ 𝑥 ] ( 𝐴 × 𝐴 ) = 𝐴 ) |
11 |
9 10
|
eqtr4d |
⊢ ( ( 𝑦 = 𝐴 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 = [ 𝑥 ] ( 𝐴 × 𝐴 ) ) |
12 |
11
|
ex |
⊢ ( 𝑦 = 𝐴 → ( 𝑥 ∈ 𝐴 → 𝑦 = [ 𝑥 ] ( 𝐴 × 𝐴 ) ) ) |
13 |
12
|
ancld |
⊢ ( 𝑦 = 𝐴 → ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 ∧ 𝑦 = [ 𝑥 ] ( 𝐴 × 𝐴 ) ) ) ) |
14 |
13
|
eximdv |
⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑥 𝑥 ∈ 𝐴 → ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 = [ 𝑥 ] ( 𝐴 × 𝐴 ) ) ) ) |
15 |
8 14
|
mpan9 |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝑦 = 𝐴 ) → ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 = [ 𝑥 ] ( 𝐴 × 𝐴 ) ) ) |
16 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑦 = [ 𝑥 ] ( 𝐴 × 𝐴 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 = [ 𝑥 ] ( 𝐴 × 𝐴 ) ) ) |
17 |
15 16
|
sylibr |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝑦 = 𝐴 ) → ∃ 𝑥 ∈ 𝐴 𝑦 = [ 𝑥 ] ( 𝐴 × 𝐴 ) ) |
18 |
6 17
|
impbida |
⊢ ( 𝐴 ≠ ∅ → ( ∃ 𝑥 ∈ 𝐴 𝑦 = [ 𝑥 ] ( 𝐴 × 𝐴 ) ↔ 𝑦 = 𝐴 ) ) |
19 |
|
vex |
⊢ 𝑦 ∈ V |
20 |
19
|
elqs |
⊢ ( 𝑦 ∈ ( 𝐴 / ( 𝐴 × 𝐴 ) ) ↔ ∃ 𝑥 ∈ 𝐴 𝑦 = [ 𝑥 ] ( 𝐴 × 𝐴 ) ) |
21 |
|
velsn |
⊢ ( 𝑦 ∈ { 𝐴 } ↔ 𝑦 = 𝐴 ) |
22 |
18 20 21
|
3bitr4g |
⊢ ( 𝐴 ≠ ∅ → ( 𝑦 ∈ ( 𝐴 / ( 𝐴 × 𝐴 ) ) ↔ 𝑦 ∈ { 𝐴 } ) ) |
23 |
22
|
eqrdv |
⊢ ( 𝐴 ≠ ∅ → ( 𝐴 / ( 𝐴 × 𝐴 ) ) = { 𝐴 } ) |