Description: Base set of a quotient structure. (Contributed by Mario Carneiro, 23-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qusbas.u | |- ( ph -> U = ( R /s .~ ) ) |
|
| qusbas.v | |- ( ph -> V = ( Base ` R ) ) |
||
| qusbas.e | |- ( ph -> .~ e. W ) |
||
| qusbas.r | |- ( ph -> R e. Z ) |
||
| Assertion | qusbas | |- ( ph -> ( V /. .~ ) = ( Base ` U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusbas.u | |- ( ph -> U = ( R /s .~ ) ) |
|
| 2 | qusbas.v | |- ( ph -> V = ( Base ` R ) ) |
|
| 3 | qusbas.e | |- ( ph -> .~ e. W ) |
|
| 4 | qusbas.r | |- ( ph -> R e. Z ) |
|
| 5 | eqid | |- ( x e. V |-> [ x ] .~ ) = ( x e. V |-> [ x ] .~ ) |
|
| 6 | 1 2 5 3 4 | qusval | |- ( ph -> U = ( ( x e. V |-> [ x ] .~ ) "s R ) ) |
| 7 | 1 2 5 3 4 | quslem | |- ( ph -> ( x e. V |-> [ x ] .~ ) : V -onto-> ( V /. .~ ) ) |
| 8 | 6 2 7 4 | imasbas | |- ( ph -> ( V /. .~ ) = ( Base ` U ) ) |