Metamath Proof Explorer


Theorem quss

Description: The scalar field of a quotient structure. (Contributed by Mario Carneiro, 24-Feb-2015)

Ref Expression
Hypotheses qusbas.u
|- ( ph -> U = ( R /s .~ ) )
qusbas.v
|- ( ph -> V = ( Base ` R ) )
qusbas.e
|- ( ph -> .~ e. W )
qusbas.r
|- ( ph -> R e. Z )
quss.k
|- K = ( Scalar ` R )
Assertion quss
|- ( ph -> K = ( Scalar ` U ) )

Proof

Step Hyp Ref Expression
1 qusbas.u
 |-  ( ph -> U = ( R /s .~ ) )
2 qusbas.v
 |-  ( ph -> V = ( Base ` R ) )
3 qusbas.e
 |-  ( ph -> .~ e. W )
4 qusbas.r
 |-  ( ph -> R e. Z )
5 quss.k
 |-  K = ( Scalar ` R )
6 eqid
 |-  ( x e. V |-> [ x ] .~ ) = ( x e. V |-> [ x ] .~ )
7 1 2 6 3 4 qusval
 |-  ( ph -> U = ( ( x e. V |-> [ x ] .~ ) "s R ) )
8 1 2 6 3 4 quslem
 |-  ( ph -> ( x e. V |-> [ x ] .~ ) : V -onto-> ( V /. .~ ) )
9 7 2 8 4 5 imassca
 |-  ( ph -> K = ( Scalar ` U ) )