Description: The scalar field of a quotient structure. (Contributed by Mario Carneiro, 24-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | qusbas.u | |- ( ph -> U = ( R /s .~ ) ) |
|
qusbas.v | |- ( ph -> V = ( Base ` R ) ) |
||
qusbas.e | |- ( ph -> .~ e. W ) |
||
qusbas.r | |- ( ph -> R e. Z ) |
||
quss.k | |- K = ( Scalar ` R ) |
||
Assertion | quss | |- ( ph -> K = ( Scalar ` U ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusbas.u | |- ( ph -> U = ( R /s .~ ) ) |
|
2 | qusbas.v | |- ( ph -> V = ( Base ` R ) ) |
|
3 | qusbas.e | |- ( ph -> .~ e. W ) |
|
4 | qusbas.r | |- ( ph -> R e. Z ) |
|
5 | quss.k | |- K = ( Scalar ` R ) |
|
6 | eqid | |- ( x e. V |-> [ x ] .~ ) = ( x e. V |-> [ x ] .~ ) |
|
7 | 1 2 6 3 4 | qusval | |- ( ph -> U = ( ( x e. V |-> [ x ] .~ ) "s R ) ) |
8 | 1 2 6 3 4 | quslem | |- ( ph -> ( x e. V |-> [ x ] .~ ) : V -onto-> ( V /. .~ ) ) |
9 | 7 2 8 4 5 | imassca | |- ( ph -> K = ( Scalar ` U ) ) |