| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qustriv.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
qustriv.2 |
⊢ 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐵 ) ) |
| 3 |
1
|
qusxpid |
⊢ ( 𝐺 ∈ Grp → ( 𝐺 ~QG 𝐵 ) = ( 𝐵 × 𝐵 ) ) |
| 4 |
3
|
qseq2d |
⊢ ( 𝐺 ∈ Grp → ( 𝐵 / ( 𝐺 ~QG 𝐵 ) ) = ( 𝐵 / ( 𝐵 × 𝐵 ) ) ) |
| 5 |
2
|
a1i |
⊢ ( 𝐺 ∈ Grp → 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐵 ) ) ) |
| 6 |
1
|
a1i |
⊢ ( 𝐺 ∈ Grp → 𝐵 = ( Base ‘ 𝐺 ) ) |
| 7 |
|
ovexd |
⊢ ( 𝐺 ∈ Grp → ( 𝐺 ~QG 𝐵 ) ∈ V ) |
| 8 |
|
id |
⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Grp ) |
| 9 |
5 6 7 8
|
qusbas |
⊢ ( 𝐺 ∈ Grp → ( 𝐵 / ( 𝐺 ~QG 𝐵 ) ) = ( Base ‘ 𝑄 ) ) |
| 10 |
1
|
grpbn0 |
⊢ ( 𝐺 ∈ Grp → 𝐵 ≠ ∅ ) |
| 11 |
|
qsxpid |
⊢ ( 𝐵 ≠ ∅ → ( 𝐵 / ( 𝐵 × 𝐵 ) ) = { 𝐵 } ) |
| 12 |
10 11
|
syl |
⊢ ( 𝐺 ∈ Grp → ( 𝐵 / ( 𝐵 × 𝐵 ) ) = { 𝐵 } ) |
| 13 |
4 9 12
|
3eqtr3d |
⊢ ( 𝐺 ∈ Grp → ( Base ‘ 𝑄 ) = { 𝐵 } ) |