Step |
Hyp |
Ref |
Expression |
1 |
|
qustriv.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
qustriv.2 |
⊢ 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐵 ) ) |
3 |
1
|
qusxpid |
⊢ ( 𝐺 ∈ Grp → ( 𝐺 ~QG 𝐵 ) = ( 𝐵 × 𝐵 ) ) |
4 |
3
|
qseq2d |
⊢ ( 𝐺 ∈ Grp → ( 𝐵 / ( 𝐺 ~QG 𝐵 ) ) = ( 𝐵 / ( 𝐵 × 𝐵 ) ) ) |
5 |
2
|
a1i |
⊢ ( 𝐺 ∈ Grp → 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐵 ) ) ) |
6 |
1
|
a1i |
⊢ ( 𝐺 ∈ Grp → 𝐵 = ( Base ‘ 𝐺 ) ) |
7 |
|
ovexd |
⊢ ( 𝐺 ∈ Grp → ( 𝐺 ~QG 𝐵 ) ∈ V ) |
8 |
|
id |
⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Grp ) |
9 |
5 6 7 8
|
qusbas |
⊢ ( 𝐺 ∈ Grp → ( 𝐵 / ( 𝐺 ~QG 𝐵 ) ) = ( Base ‘ 𝑄 ) ) |
10 |
1
|
grpbn0 |
⊢ ( 𝐺 ∈ Grp → 𝐵 ≠ ∅ ) |
11 |
|
qsxpid |
⊢ ( 𝐵 ≠ ∅ → ( 𝐵 / ( 𝐵 × 𝐵 ) ) = { 𝐵 } ) |
12 |
10 11
|
syl |
⊢ ( 𝐺 ∈ Grp → ( 𝐵 / ( 𝐵 × 𝐵 ) ) = { 𝐵 } ) |
13 |
4 9 12
|
3eqtr3d |
⊢ ( 𝐺 ∈ Grp → ( Base ‘ 𝑄 ) = { 𝐵 } ) |