Step |
Hyp |
Ref |
Expression |
1 |
|
qustrivr.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
qustrivr.2 |
⊢ 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐻 ) ) |
3 |
2
|
a1i |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐻 ) ) ) |
4 |
1
|
a1i |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝐵 = ( Base ‘ 𝐺 ) ) |
5 |
|
ovexd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝐺 ~QG 𝐻 ) ∈ V ) |
6 |
|
simpl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝐺 ∈ Grp ) |
7 |
3 4 5 6
|
qusbas |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝐵 / ( 𝐺 ~QG 𝐻 ) ) = ( Base ‘ 𝑄 ) ) |
8 |
7
|
3adant3 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( Base ‘ 𝑄 ) = { 𝐻 } ) → ( 𝐵 / ( 𝐺 ~QG 𝐻 ) ) = ( Base ‘ 𝑄 ) ) |
9 |
|
simp3 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( Base ‘ 𝑄 ) = { 𝐻 } ) → ( Base ‘ 𝑄 ) = { 𝐻 } ) |
10 |
8 9
|
eqtrd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( Base ‘ 𝑄 ) = { 𝐻 } ) → ( 𝐵 / ( 𝐺 ~QG 𝐻 ) ) = { 𝐻 } ) |
11 |
10
|
unieqd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( Base ‘ 𝑄 ) = { 𝐻 } ) → ∪ ( 𝐵 / ( 𝐺 ~QG 𝐻 ) ) = ∪ { 𝐻 } ) |
12 |
|
eqid |
⊢ ( 𝐺 ~QG 𝐻 ) = ( 𝐺 ~QG 𝐻 ) |
13 |
1 12
|
eqger |
⊢ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ~QG 𝐻 ) Er 𝐵 ) |
14 |
13
|
adantl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝐺 ~QG 𝐻 ) Er 𝐵 ) |
15 |
14 5
|
uniqs2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) → ∪ ( 𝐵 / ( 𝐺 ~QG 𝐻 ) ) = 𝐵 ) |
16 |
15
|
3adant3 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( Base ‘ 𝑄 ) = { 𝐻 } ) → ∪ ( 𝐵 / ( 𝐺 ~QG 𝐻 ) ) = 𝐵 ) |
17 |
|
unisng |
⊢ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → ∪ { 𝐻 } = 𝐻 ) |
18 |
17
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( Base ‘ 𝑄 ) = { 𝐻 } ) → ∪ { 𝐻 } = 𝐻 ) |
19 |
11 16 18
|
3eqtr3rd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( Base ‘ 𝑄 ) = { 𝐻 } ) → 𝐻 = 𝐵 ) |