Metamath Proof Explorer


Theorem qsidom

Description: An ideal I in the commutative ring R is prime if and only if the factor ring Q is an integral domain. (Contributed by Thierry Arnoux, 16-Jan-2024)

Ref Expression
Hypothesis qsidom.1
|- Q = ( R /s ( R ~QG I ) )
Assertion qsidom
|- ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) -> ( Q e. IDomn <-> I e. ( PrmIdeal ` R ) ) )

Proof

Step Hyp Ref Expression
1 qsidom.1
 |-  Q = ( R /s ( R ~QG I ) )
2 1 qsidomlem1
 |-  ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ Q e. IDomn ) -> I e. ( PrmIdeal ` R ) )
3 1 qsidomlem2
 |-  ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) -> Q e. IDomn )
4 3 adantlr
 |-  ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ I e. ( PrmIdeal ` R ) ) -> Q e. IDomn )
5 2 4 impbida
 |-  ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) -> ( Q e. IDomn <-> I e. ( PrmIdeal ` R ) ) )