Description: An ideal I in the commutative ring R is prime if and only if the factor ring Q is an integral domain. (Contributed by Thierry Arnoux, 16-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | qsidom.1 | |- Q = ( R /s ( R ~QG I ) ) |
|
| Assertion | qsidom | |- ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) -> ( Q e. IDomn <-> I e. ( PrmIdeal ` R ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qsidom.1 | |- Q = ( R /s ( R ~QG I ) ) |
|
| 2 | 1 | qsidomlem1 | |- ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ Q e. IDomn ) -> I e. ( PrmIdeal ` R ) ) |
| 3 | 1 | qsidomlem2 | |- ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) -> Q e. IDomn ) |
| 4 | 3 | adantlr | |- ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ I e. ( PrmIdeal ` R ) ) -> Q e. IDomn ) |
| 5 | 2 4 | impbida | |- ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) -> ( Q e. IDomn <-> I e. ( PrmIdeal ` R ) ) ) |