Step |
Hyp |
Ref |
Expression |
1 |
|
qsidom.1 |
|- Q = ( R /s ( R ~QG I ) ) |
2 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
3 |
2
|
ad2antrr |
|- ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ Q e. IDomn ) -> R e. Ring ) |
4 |
|
simplr |
|- ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ Q e. IDomn ) -> I e. ( LIdeal ` R ) ) |
5 |
|
simpr |
|- ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ Q e. IDomn ) /\ I = ( Base ` R ) ) -> I = ( Base ` R ) ) |
6 |
5
|
oveq2d |
|- ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ Q e. IDomn ) /\ I = ( Base ` R ) ) -> ( R ~QG I ) = ( R ~QG ( Base ` R ) ) ) |
7 |
6
|
oveq2d |
|- ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ Q e. IDomn ) /\ I = ( Base ` R ) ) -> ( R /s ( R ~QG I ) ) = ( R /s ( R ~QG ( Base ` R ) ) ) ) |
8 |
1 7
|
syl5eq |
|- ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ Q e. IDomn ) /\ I = ( Base ` R ) ) -> Q = ( R /s ( R ~QG ( Base ` R ) ) ) ) |
9 |
8
|
fveq2d |
|- ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ Q e. IDomn ) /\ I = ( Base ` R ) ) -> ( Base ` Q ) = ( Base ` ( R /s ( R ~QG ( Base ` R ) ) ) ) ) |
10 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
11 |
2 10
|
syl |
|- ( R e. CRing -> R e. Grp ) |
12 |
11
|
ad3antrrr |
|- ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ Q e. IDomn ) /\ I = ( Base ` R ) ) -> R e. Grp ) |
13 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
14 |
|
eqid |
|- ( R /s ( R ~QG ( Base ` R ) ) ) = ( R /s ( R ~QG ( Base ` R ) ) ) |
15 |
13 14
|
qustriv |
|- ( R e. Grp -> ( Base ` ( R /s ( R ~QG ( Base ` R ) ) ) ) = { ( Base ` R ) } ) |
16 |
12 15
|
syl |
|- ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ Q e. IDomn ) /\ I = ( Base ` R ) ) -> ( Base ` ( R /s ( R ~QG ( Base ` R ) ) ) ) = { ( Base ` R ) } ) |
17 |
9 16
|
eqtrd |
|- ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ Q e. IDomn ) /\ I = ( Base ` R ) ) -> ( Base ` Q ) = { ( Base ` R ) } ) |
18 |
17
|
fveq2d |
|- ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ Q e. IDomn ) /\ I = ( Base ` R ) ) -> ( # ` ( Base ` Q ) ) = ( # ` { ( Base ` R ) } ) ) |
19 |
|
fvex |
|- ( Base ` R ) e. _V |
20 |
|
hashsng |
|- ( ( Base ` R ) e. _V -> ( # ` { ( Base ` R ) } ) = 1 ) |
21 |
19 20
|
ax-mp |
|- ( # ` { ( Base ` R ) } ) = 1 |
22 |
18 21
|
eqtrdi |
|- ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ Q e. IDomn ) /\ I = ( Base ` R ) ) -> ( # ` ( Base ` Q ) ) = 1 ) |
23 |
|
1red |
|- ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ Q e. IDomn ) /\ I = ( Base ` R ) ) -> 1 e. RR ) |
24 |
|
isidom |
|- ( Q e. IDomn <-> ( Q e. CRing /\ Q e. Domn ) ) |
25 |
24
|
simprbi |
|- ( Q e. IDomn -> Q e. Domn ) |
26 |
|
domnnzr |
|- ( Q e. Domn -> Q e. NzRing ) |
27 |
25 26
|
syl |
|- ( Q e. IDomn -> Q e. NzRing ) |
28 |
27
|
ad2antlr |
|- ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ Q e. IDomn ) /\ I = ( Base ` R ) ) -> Q e. NzRing ) |
29 |
|
eqid |
|- ( Base ` Q ) = ( Base ` Q ) |
30 |
29
|
isnzr2hash |
|- ( Q e. NzRing <-> ( Q e. Ring /\ 1 < ( # ` ( Base ` Q ) ) ) ) |
31 |
30
|
simprbi |
|- ( Q e. NzRing -> 1 < ( # ` ( Base ` Q ) ) ) |
32 |
28 31
|
syl |
|- ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ Q e. IDomn ) /\ I = ( Base ` R ) ) -> 1 < ( # ` ( Base ` Q ) ) ) |
33 |
23 32
|
gtned |
|- ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ Q e. IDomn ) /\ I = ( Base ` R ) ) -> ( # ` ( Base ` Q ) ) =/= 1 ) |
34 |
33
|
neneqd |
|- ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ Q e. IDomn ) /\ I = ( Base ` R ) ) -> -. ( # ` ( Base ` Q ) ) = 1 ) |
35 |
22 34
|
pm2.65da |
|- ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ Q e. IDomn ) -> -. I = ( Base ` R ) ) |
36 |
35
|
neqned |
|- ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ Q e. IDomn ) -> I =/= ( Base ` R ) ) |
37 |
25
|
ad4antlr |
|- ( ( ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ Q e. IDomn ) /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) /\ ( x ( .r ` R ) y ) e. I ) -> Q e. Domn ) |
38 |
|
ovex |
|- ( R ~QG I ) e. _V |
39 |
38
|
ecelqsi |
|- ( x e. ( Base ` R ) -> [ x ] ( R ~QG I ) e. ( ( Base ` R ) /. ( R ~QG I ) ) ) |
40 |
39
|
ad3antlr |
|- ( ( ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ Q e. IDomn ) /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) /\ ( x ( .r ` R ) y ) e. I ) -> [ x ] ( R ~QG I ) e. ( ( Base ` R ) /. ( R ~QG I ) ) ) |
41 |
|
simp-5l |
|- ( ( ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ Q e. IDomn ) /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) /\ ( x ( .r ` R ) y ) e. I ) -> R e. CRing ) |
42 |
1
|
a1i |
|- ( R e. CRing -> Q = ( R /s ( R ~QG I ) ) ) |
43 |
|
eqidd |
|- ( R e. CRing -> ( Base ` R ) = ( Base ` R ) ) |
44 |
|
ovexd |
|- ( R e. CRing -> ( R ~QG I ) e. _V ) |
45 |
|
id |
|- ( R e. CRing -> R e. CRing ) |
46 |
42 43 44 45
|
qusbas |
|- ( R e. CRing -> ( ( Base ` R ) /. ( R ~QG I ) ) = ( Base ` Q ) ) |
47 |
41 46
|
syl |
|- ( ( ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ Q e. IDomn ) /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) /\ ( x ( .r ` R ) y ) e. I ) -> ( ( Base ` R ) /. ( R ~QG I ) ) = ( Base ` Q ) ) |
48 |
40 47
|
eleqtrd |
|- ( ( ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ Q e. IDomn ) /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) /\ ( x ( .r ` R ) y ) e. I ) -> [ x ] ( R ~QG I ) e. ( Base ` Q ) ) |
49 |
38
|
ecelqsi |
|- ( y e. ( Base ` R ) -> [ y ] ( R ~QG I ) e. ( ( Base ` R ) /. ( R ~QG I ) ) ) |
50 |
49
|
ad2antlr |
|- ( ( ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ Q e. IDomn ) /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) /\ ( x ( .r ` R ) y ) e. I ) -> [ y ] ( R ~QG I ) e. ( ( Base ` R ) /. ( R ~QG I ) ) ) |
51 |
50 47
|
eleqtrd |
|- ( ( ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ Q e. IDomn ) /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) /\ ( x ( .r ` R ) y ) e. I ) -> [ y ] ( R ~QG I ) e. ( Base ` Q ) ) |
52 |
41 2 10
|
3syl |
|- ( ( ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ Q e. IDomn ) /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) /\ ( x ( .r ` R ) y ) e. I ) -> R e. Grp ) |
53 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
54 |
53
|
lidlsubg |
|- ( ( R e. Ring /\ I e. ( LIdeal ` R ) ) -> I e. ( SubGrp ` R ) ) |
55 |
2 54
|
sylan |
|- ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) -> I e. ( SubGrp ` R ) ) |
56 |
55
|
ad4antr |
|- ( ( ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ Q e. IDomn ) /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) /\ ( x ( .r ` R ) y ) e. I ) -> I e. ( SubGrp ` R ) ) |
57 |
|
simpr |
|- ( ( ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ Q e. IDomn ) /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) /\ ( x ( .r ` R ) y ) e. I ) -> ( x ( .r ` R ) y ) e. I ) |
58 |
|
eqid |
|- ( R ~QG I ) = ( R ~QG I ) |
59 |
58
|
eqg0el |
|- ( ( R e. Grp /\ I e. ( SubGrp ` R ) ) -> ( [ ( x ( .r ` R ) y ) ] ( R ~QG I ) = I <-> ( x ( .r ` R ) y ) e. I ) ) |
60 |
59
|
biimpar |
|- ( ( ( R e. Grp /\ I e. ( SubGrp ` R ) ) /\ ( x ( .r ` R ) y ) e. I ) -> [ ( x ( .r ` R ) y ) ] ( R ~QG I ) = I ) |
61 |
52 56 57 60
|
syl21anc |
|- ( ( ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ Q e. IDomn ) /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) /\ ( x ( .r ` R ) y ) e. I ) -> [ ( x ( .r ` R ) y ) ] ( R ~QG I ) = I ) |
62 |
1
|
a1i |
|- ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) -> Q = ( R /s ( R ~QG I ) ) ) |
63 |
|
eqidd |
|- ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) -> ( Base ` R ) = ( Base ` R ) ) |
64 |
13 58
|
eqger |
|- ( I e. ( SubGrp ` R ) -> ( R ~QG I ) Er ( Base ` R ) ) |
65 |
55 64
|
syl |
|- ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) -> ( R ~QG I ) Er ( Base ` R ) ) |
66 |
|
simpl |
|- ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) -> R e. CRing ) |
67 |
53
|
crng2idl |
|- ( R e. CRing -> ( LIdeal ` R ) = ( 2Ideal ` R ) ) |
68 |
67
|
eleq2d |
|- ( R e. CRing -> ( I e. ( LIdeal ` R ) <-> I e. ( 2Ideal ` R ) ) ) |
69 |
68
|
biimpa |
|- ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) -> I e. ( 2Ideal ` R ) ) |
70 |
|
eqid |
|- ( 2Ideal ` R ) = ( 2Ideal ` R ) |
71 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
72 |
13 58 70 71
|
2idlcpbl |
|- ( ( R e. Ring /\ I e. ( 2Ideal ` R ) ) -> ( ( g ( R ~QG I ) e /\ h ( R ~QG I ) f ) -> ( g ( .r ` R ) h ) ( R ~QG I ) ( e ( .r ` R ) f ) ) ) |
73 |
2 69 72
|
syl2an2r |
|- ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) -> ( ( g ( R ~QG I ) e /\ h ( R ~QG I ) f ) -> ( g ( .r ` R ) h ) ( R ~QG I ) ( e ( .r ` R ) f ) ) ) |
74 |
2
|
ad2antrr |
|- ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ ( e e. ( Base ` R ) /\ f e. ( Base ` R ) ) ) -> R e. Ring ) |
75 |
|
simprl |
|- ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ ( e e. ( Base ` R ) /\ f e. ( Base ` R ) ) ) -> e e. ( Base ` R ) ) |
76 |
|
simprr |
|- ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ ( e e. ( Base ` R ) /\ f e. ( Base ` R ) ) ) -> f e. ( Base ` R ) ) |
77 |
13 71
|
ringcl |
|- ( ( R e. Ring /\ e e. ( Base ` R ) /\ f e. ( Base ` R ) ) -> ( e ( .r ` R ) f ) e. ( Base ` R ) ) |
78 |
74 75 76 77
|
syl3anc |
|- ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ ( e e. ( Base ` R ) /\ f e. ( Base ` R ) ) ) -> ( e ( .r ` R ) f ) e. ( Base ` R ) ) |
79 |
|
eqid |
|- ( .r ` Q ) = ( .r ` Q ) |
80 |
62 63 65 66 73 78 71 79
|
qusmulval |
|- ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( [ x ] ( R ~QG I ) ( .r ` Q ) [ y ] ( R ~QG I ) ) = [ ( x ( .r ` R ) y ) ] ( R ~QG I ) ) |
81 |
80
|
ad5ant134 |
|- ( ( ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ Q e. IDomn ) /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) /\ ( x ( .r ` R ) y ) e. I ) -> ( [ x ] ( R ~QG I ) ( .r ` Q ) [ y ] ( R ~QG I ) ) = [ ( x ( .r ` R ) y ) ] ( R ~QG I ) ) |
82 |
|
lidlnsg |
|- ( ( R e. Ring /\ I e. ( LIdeal ` R ) ) -> I e. ( NrmSGrp ` R ) ) |
83 |
2 82
|
sylan |
|- ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) -> I e. ( NrmSGrp ` R ) ) |
84 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
85 |
1 84
|
qus0 |
|- ( I e. ( NrmSGrp ` R ) -> [ ( 0g ` R ) ] ( R ~QG I ) = ( 0g ` Q ) ) |
86 |
83 85
|
syl |
|- ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) -> [ ( 0g ` R ) ] ( R ~QG I ) = ( 0g ` Q ) ) |
87 |
13 58 84
|
eqgid |
|- ( I e. ( SubGrp ` R ) -> [ ( 0g ` R ) ] ( R ~QG I ) = I ) |
88 |
55 87
|
syl |
|- ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) -> [ ( 0g ` R ) ] ( R ~QG I ) = I ) |
89 |
86 88
|
eqtr3d |
|- ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) -> ( 0g ` Q ) = I ) |
90 |
89
|
ad4antr |
|- ( ( ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ Q e. IDomn ) /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) /\ ( x ( .r ` R ) y ) e. I ) -> ( 0g ` Q ) = I ) |
91 |
61 81 90
|
3eqtr4d |
|- ( ( ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ Q e. IDomn ) /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) /\ ( x ( .r ` R ) y ) e. I ) -> ( [ x ] ( R ~QG I ) ( .r ` Q ) [ y ] ( R ~QG I ) ) = ( 0g ` Q ) ) |
92 |
|
eqid |
|- ( 0g ` Q ) = ( 0g ` Q ) |
93 |
29 79 92
|
domneq0 |
|- ( ( Q e. Domn /\ [ x ] ( R ~QG I ) e. ( Base ` Q ) /\ [ y ] ( R ~QG I ) e. ( Base ` Q ) ) -> ( ( [ x ] ( R ~QG I ) ( .r ` Q ) [ y ] ( R ~QG I ) ) = ( 0g ` Q ) <-> ( [ x ] ( R ~QG I ) = ( 0g ` Q ) \/ [ y ] ( R ~QG I ) = ( 0g ` Q ) ) ) ) |
94 |
93
|
biimpa |
|- ( ( ( Q e. Domn /\ [ x ] ( R ~QG I ) e. ( Base ` Q ) /\ [ y ] ( R ~QG I ) e. ( Base ` Q ) ) /\ ( [ x ] ( R ~QG I ) ( .r ` Q ) [ y ] ( R ~QG I ) ) = ( 0g ` Q ) ) -> ( [ x ] ( R ~QG I ) = ( 0g ` Q ) \/ [ y ] ( R ~QG I ) = ( 0g ` Q ) ) ) |
95 |
37 48 51 91 94
|
syl31anc |
|- ( ( ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ Q e. IDomn ) /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) /\ ( x ( .r ` R ) y ) e. I ) -> ( [ x ] ( R ~QG I ) = ( 0g ` Q ) \/ [ y ] ( R ~QG I ) = ( 0g ` Q ) ) ) |
96 |
89
|
eqeq2d |
|- ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) -> ( [ x ] ( R ~QG I ) = ( 0g ` Q ) <-> [ x ] ( R ~QG I ) = I ) ) |
97 |
66 2 10
|
3syl |
|- ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) -> R e. Grp ) |
98 |
58
|
eqg0el |
|- ( ( R e. Grp /\ I e. ( SubGrp ` R ) ) -> ( [ x ] ( R ~QG I ) = I <-> x e. I ) ) |
99 |
97 55 98
|
syl2anc |
|- ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) -> ( [ x ] ( R ~QG I ) = I <-> x e. I ) ) |
100 |
96 99
|
bitrd |
|- ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) -> ( [ x ] ( R ~QG I ) = ( 0g ` Q ) <-> x e. I ) ) |
101 |
89
|
eqeq2d |
|- ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) -> ( [ y ] ( R ~QG I ) = ( 0g ` Q ) <-> [ y ] ( R ~QG I ) = I ) ) |
102 |
58
|
eqg0el |
|- ( ( R e. Grp /\ I e. ( SubGrp ` R ) ) -> ( [ y ] ( R ~QG I ) = I <-> y e. I ) ) |
103 |
97 55 102
|
syl2anc |
|- ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) -> ( [ y ] ( R ~QG I ) = I <-> y e. I ) ) |
104 |
101 103
|
bitrd |
|- ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) -> ( [ y ] ( R ~QG I ) = ( 0g ` Q ) <-> y e. I ) ) |
105 |
100 104
|
orbi12d |
|- ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) -> ( ( [ x ] ( R ~QG I ) = ( 0g ` Q ) \/ [ y ] ( R ~QG I ) = ( 0g ` Q ) ) <-> ( x e. I \/ y e. I ) ) ) |
106 |
105
|
ad4antr |
|- ( ( ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ Q e. IDomn ) /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) /\ ( x ( .r ` R ) y ) e. I ) -> ( ( [ x ] ( R ~QG I ) = ( 0g ` Q ) \/ [ y ] ( R ~QG I ) = ( 0g ` Q ) ) <-> ( x e. I \/ y e. I ) ) ) |
107 |
95 106
|
mpbid |
|- ( ( ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ Q e. IDomn ) /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) /\ ( x ( .r ` R ) y ) e. I ) -> ( x e. I \/ y e. I ) ) |
108 |
107
|
ex |
|- ( ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ Q e. IDomn ) /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) -> ( ( x ( .r ` R ) y ) e. I -> ( x e. I \/ y e. I ) ) ) |
109 |
108
|
anasss |
|- ( ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ Q e. IDomn ) /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( ( x ( .r ` R ) y ) e. I -> ( x e. I \/ y e. I ) ) ) |
110 |
109
|
ralrimivva |
|- ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ Q e. IDomn ) -> A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) e. I -> ( x e. I \/ y e. I ) ) ) |
111 |
13 71
|
prmidl2 |
|- ( ( ( R e. Ring /\ I e. ( LIdeal ` R ) ) /\ ( I =/= ( Base ` R ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) e. I -> ( x e. I \/ y e. I ) ) ) ) -> I e. ( PrmIdeal ` R ) ) |
112 |
3 4 36 110 111
|
syl22anc |
|- ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ Q e. IDomn ) -> I e. ( PrmIdeal ` R ) ) |