Step |
Hyp |
Ref |
Expression |
1 |
|
qsidom.1 |
⊢ 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) |
2 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
3 |
2
|
ad2antrr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) → 𝑅 ∈ Ring ) |
4 |
|
simplr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) → 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) |
5 |
|
simpr |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝐼 = ( Base ‘ 𝑅 ) ) → 𝐼 = ( Base ‘ 𝑅 ) ) |
6 |
5
|
oveq2d |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝐼 = ( Base ‘ 𝑅 ) ) → ( 𝑅 ~QG 𝐼 ) = ( 𝑅 ~QG ( Base ‘ 𝑅 ) ) ) |
7 |
6
|
oveq2d |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝐼 = ( Base ‘ 𝑅 ) ) → ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) = ( 𝑅 /s ( 𝑅 ~QG ( Base ‘ 𝑅 ) ) ) ) |
8 |
1 7
|
eqtrid |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝐼 = ( Base ‘ 𝑅 ) ) → 𝑄 = ( 𝑅 /s ( 𝑅 ~QG ( Base ‘ 𝑅 ) ) ) ) |
9 |
8
|
fveq2d |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝐼 = ( Base ‘ 𝑅 ) ) → ( Base ‘ 𝑄 ) = ( Base ‘ ( 𝑅 /s ( 𝑅 ~QG ( Base ‘ 𝑅 ) ) ) ) ) |
10 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
11 |
2 10
|
syl |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Grp ) |
12 |
11
|
ad3antrrr |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝐼 = ( Base ‘ 𝑅 ) ) → 𝑅 ∈ Grp ) |
13 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
14 |
|
eqid |
⊢ ( 𝑅 /s ( 𝑅 ~QG ( Base ‘ 𝑅 ) ) ) = ( 𝑅 /s ( 𝑅 ~QG ( Base ‘ 𝑅 ) ) ) |
15 |
13 14
|
qustriv |
⊢ ( 𝑅 ∈ Grp → ( Base ‘ ( 𝑅 /s ( 𝑅 ~QG ( Base ‘ 𝑅 ) ) ) ) = { ( Base ‘ 𝑅 ) } ) |
16 |
12 15
|
syl |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝐼 = ( Base ‘ 𝑅 ) ) → ( Base ‘ ( 𝑅 /s ( 𝑅 ~QG ( Base ‘ 𝑅 ) ) ) ) = { ( Base ‘ 𝑅 ) } ) |
17 |
9 16
|
eqtrd |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝐼 = ( Base ‘ 𝑅 ) ) → ( Base ‘ 𝑄 ) = { ( Base ‘ 𝑅 ) } ) |
18 |
17
|
fveq2d |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝐼 = ( Base ‘ 𝑅 ) ) → ( ♯ ‘ ( Base ‘ 𝑄 ) ) = ( ♯ ‘ { ( Base ‘ 𝑅 ) } ) ) |
19 |
|
fvex |
⊢ ( Base ‘ 𝑅 ) ∈ V |
20 |
|
hashsng |
⊢ ( ( Base ‘ 𝑅 ) ∈ V → ( ♯ ‘ { ( Base ‘ 𝑅 ) } ) = 1 ) |
21 |
19 20
|
ax-mp |
⊢ ( ♯ ‘ { ( Base ‘ 𝑅 ) } ) = 1 |
22 |
18 21
|
eqtrdi |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝐼 = ( Base ‘ 𝑅 ) ) → ( ♯ ‘ ( Base ‘ 𝑄 ) ) = 1 ) |
23 |
|
1red |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝐼 = ( Base ‘ 𝑅 ) ) → 1 ∈ ℝ ) |
24 |
|
isidom |
⊢ ( 𝑄 ∈ IDomn ↔ ( 𝑄 ∈ CRing ∧ 𝑄 ∈ Domn ) ) |
25 |
24
|
simprbi |
⊢ ( 𝑄 ∈ IDomn → 𝑄 ∈ Domn ) |
26 |
|
domnnzr |
⊢ ( 𝑄 ∈ Domn → 𝑄 ∈ NzRing ) |
27 |
25 26
|
syl |
⊢ ( 𝑄 ∈ IDomn → 𝑄 ∈ NzRing ) |
28 |
27
|
ad2antlr |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝐼 = ( Base ‘ 𝑅 ) ) → 𝑄 ∈ NzRing ) |
29 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
30 |
29
|
isnzr2hash |
⊢ ( 𝑄 ∈ NzRing ↔ ( 𝑄 ∈ Ring ∧ 1 < ( ♯ ‘ ( Base ‘ 𝑄 ) ) ) ) |
31 |
30
|
simprbi |
⊢ ( 𝑄 ∈ NzRing → 1 < ( ♯ ‘ ( Base ‘ 𝑄 ) ) ) |
32 |
28 31
|
syl |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝐼 = ( Base ‘ 𝑅 ) ) → 1 < ( ♯ ‘ ( Base ‘ 𝑄 ) ) ) |
33 |
23 32
|
gtned |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝐼 = ( Base ‘ 𝑅 ) ) → ( ♯ ‘ ( Base ‘ 𝑄 ) ) ≠ 1 ) |
34 |
33
|
neneqd |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝐼 = ( Base ‘ 𝑅 ) ) → ¬ ( ♯ ‘ ( Base ‘ 𝑄 ) ) = 1 ) |
35 |
22 34
|
pm2.65da |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) → ¬ 𝐼 = ( Base ‘ 𝑅 ) ) |
36 |
35
|
neqned |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) → 𝐼 ≠ ( Base ‘ 𝑅 ) ) |
37 |
25
|
ad4antlr |
⊢ ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ) → 𝑄 ∈ Domn ) |
38 |
|
ovex |
⊢ ( 𝑅 ~QG 𝐼 ) ∈ V |
39 |
38
|
ecelqsi |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑅 ) → [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ∈ ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝐼 ) ) ) |
40 |
39
|
ad3antlr |
⊢ ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ) → [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ∈ ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝐼 ) ) ) |
41 |
|
simp-5l |
⊢ ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ) → 𝑅 ∈ CRing ) |
42 |
1
|
a1i |
⊢ ( 𝑅 ∈ CRing → 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) ) |
43 |
|
eqidd |
⊢ ( 𝑅 ∈ CRing → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) ) |
44 |
|
ovexd |
⊢ ( 𝑅 ∈ CRing → ( 𝑅 ~QG 𝐼 ) ∈ V ) |
45 |
|
id |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ CRing ) |
46 |
42 43 44 45
|
qusbas |
⊢ ( 𝑅 ∈ CRing → ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝐼 ) ) = ( Base ‘ 𝑄 ) ) |
47 |
41 46
|
syl |
⊢ ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ) → ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝐼 ) ) = ( Base ‘ 𝑄 ) ) |
48 |
40 47
|
eleqtrd |
⊢ ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ) → [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ∈ ( Base ‘ 𝑄 ) ) |
49 |
38
|
ecelqsi |
⊢ ( 𝑦 ∈ ( Base ‘ 𝑅 ) → [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ∈ ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝐼 ) ) ) |
50 |
49
|
ad2antlr |
⊢ ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ) → [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ∈ ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝐼 ) ) ) |
51 |
50 47
|
eleqtrd |
⊢ ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ) → [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ∈ ( Base ‘ 𝑄 ) ) |
52 |
41 2 10
|
3syl |
⊢ ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ) → 𝑅 ∈ Grp ) |
53 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
54 |
53
|
lidlsubg |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) |
55 |
2 54
|
sylan |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) |
56 |
55
|
ad4antr |
⊢ ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) |
57 |
|
simpr |
⊢ ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ) |
58 |
|
eqid |
⊢ ( 𝑅 ~QG 𝐼 ) = ( 𝑅 ~QG 𝐼 ) |
59 |
58
|
eqg0el |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) → ( [ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ] ( 𝑅 ~QG 𝐼 ) = 𝐼 ↔ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ) ) |
60 |
59
|
biimpar |
⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ) → [ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ] ( 𝑅 ~QG 𝐼 ) = 𝐼 ) |
61 |
52 56 57 60
|
syl21anc |
⊢ ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ) → [ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ] ( 𝑅 ~QG 𝐼 ) = 𝐼 ) |
62 |
1
|
a1i |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) ) |
63 |
|
eqidd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) ) |
64 |
13 58
|
eqger |
⊢ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) → ( 𝑅 ~QG 𝐼 ) Er ( Base ‘ 𝑅 ) ) |
65 |
55 64
|
syl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → ( 𝑅 ~QG 𝐼 ) Er ( Base ‘ 𝑅 ) ) |
66 |
|
simpl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑅 ∈ CRing ) |
67 |
53
|
crng2idl |
⊢ ( 𝑅 ∈ CRing → ( LIdeal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 ) ) |
68 |
67
|
eleq2d |
⊢ ( 𝑅 ∈ CRing → ( 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ↔ 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) ) |
69 |
68
|
biimpa |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
70 |
|
eqid |
⊢ ( 2Ideal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 ) |
71 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
72 |
13 58 70 71
|
2idlcpbl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) → ( ( 𝑔 ( 𝑅 ~QG 𝐼 ) 𝑒 ∧ ℎ ( 𝑅 ~QG 𝐼 ) 𝑓 ) → ( 𝑔 ( .r ‘ 𝑅 ) ℎ ) ( 𝑅 ~QG 𝐼 ) ( 𝑒 ( .r ‘ 𝑅 ) 𝑓 ) ) ) |
73 |
2 69 72
|
syl2an2r |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → ( ( 𝑔 ( 𝑅 ~QG 𝐼 ) 𝑒 ∧ ℎ ( 𝑅 ~QG 𝐼 ) 𝑓 ) → ( 𝑔 ( .r ‘ 𝑅 ) ℎ ) ( 𝑅 ~QG 𝐼 ) ( 𝑒 ( .r ‘ 𝑅 ) 𝑓 ) ) ) |
74 |
2
|
ad2antrr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( 𝑒 ∈ ( Base ‘ 𝑅 ) ∧ 𝑓 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑅 ∈ Ring ) |
75 |
|
simprl |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( 𝑒 ∈ ( Base ‘ 𝑅 ) ∧ 𝑓 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑒 ∈ ( Base ‘ 𝑅 ) ) |
76 |
|
simprr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( 𝑒 ∈ ( Base ‘ 𝑅 ) ∧ 𝑓 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑓 ∈ ( Base ‘ 𝑅 ) ) |
77 |
13 71
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑒 ∈ ( Base ‘ 𝑅 ) ∧ 𝑓 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑒 ( .r ‘ 𝑅 ) 𝑓 ) ∈ ( Base ‘ 𝑅 ) ) |
78 |
74 75 76 77
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( 𝑒 ∈ ( Base ‘ 𝑅 ) ∧ 𝑓 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑒 ( .r ‘ 𝑅 ) 𝑓 ) ∈ ( Base ‘ 𝑅 ) ) |
79 |
|
eqid |
⊢ ( .r ‘ 𝑄 ) = ( .r ‘ 𝑄 ) |
80 |
62 63 65 66 73 78 71 79
|
qusmulval |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ( .r ‘ 𝑄 ) [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ) = [ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ] ( 𝑅 ~QG 𝐼 ) ) |
81 |
80
|
ad5ant134 |
⊢ ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ) → ( [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ( .r ‘ 𝑄 ) [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ) = [ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ] ( 𝑅 ~QG 𝐼 ) ) |
82 |
|
lidlnsg |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) ) |
83 |
2 82
|
sylan |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) ) |
84 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
85 |
1 84
|
qus0 |
⊢ ( 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) → [ ( 0g ‘ 𝑅 ) ] ( 𝑅 ~QG 𝐼 ) = ( 0g ‘ 𝑄 ) ) |
86 |
83 85
|
syl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → [ ( 0g ‘ 𝑅 ) ] ( 𝑅 ~QG 𝐼 ) = ( 0g ‘ 𝑄 ) ) |
87 |
13 58 84
|
eqgid |
⊢ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) → [ ( 0g ‘ 𝑅 ) ] ( 𝑅 ~QG 𝐼 ) = 𝐼 ) |
88 |
55 87
|
syl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → [ ( 0g ‘ 𝑅 ) ] ( 𝑅 ~QG 𝐼 ) = 𝐼 ) |
89 |
86 88
|
eqtr3d |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → ( 0g ‘ 𝑄 ) = 𝐼 ) |
90 |
89
|
ad4antr |
⊢ ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ) → ( 0g ‘ 𝑄 ) = 𝐼 ) |
91 |
61 81 90
|
3eqtr4d |
⊢ ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ) → ( [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ( .r ‘ 𝑄 ) [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ) = ( 0g ‘ 𝑄 ) ) |
92 |
|
eqid |
⊢ ( 0g ‘ 𝑄 ) = ( 0g ‘ 𝑄 ) |
93 |
29 79 92
|
domneq0 |
⊢ ( ( 𝑄 ∈ Domn ∧ [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ∈ ( Base ‘ 𝑄 ) ∧ [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ∈ ( Base ‘ 𝑄 ) ) → ( ( [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ( .r ‘ 𝑄 ) [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ) = ( 0g ‘ 𝑄 ) ↔ ( [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) = ( 0g ‘ 𝑄 ) ∨ [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) = ( 0g ‘ 𝑄 ) ) ) ) |
94 |
93
|
biimpa |
⊢ ( ( ( 𝑄 ∈ Domn ∧ [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ∈ ( Base ‘ 𝑄 ) ∧ [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ∈ ( Base ‘ 𝑄 ) ) ∧ ( [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ( .r ‘ 𝑄 ) [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ) = ( 0g ‘ 𝑄 ) ) → ( [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) = ( 0g ‘ 𝑄 ) ∨ [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) = ( 0g ‘ 𝑄 ) ) ) |
95 |
37 48 51 91 94
|
syl31anc |
⊢ ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ) → ( [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) = ( 0g ‘ 𝑄 ) ∨ [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) = ( 0g ‘ 𝑄 ) ) ) |
96 |
89
|
eqeq2d |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → ( [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) = ( 0g ‘ 𝑄 ) ↔ [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) = 𝐼 ) ) |
97 |
66 2 10
|
3syl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑅 ∈ Grp ) |
98 |
58
|
eqg0el |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) → ( [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) = 𝐼 ↔ 𝑥 ∈ 𝐼 ) ) |
99 |
97 55 98
|
syl2anc |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → ( [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) = 𝐼 ↔ 𝑥 ∈ 𝐼 ) ) |
100 |
96 99
|
bitrd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → ( [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) = ( 0g ‘ 𝑄 ) ↔ 𝑥 ∈ 𝐼 ) ) |
101 |
89
|
eqeq2d |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → ( [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) = ( 0g ‘ 𝑄 ) ↔ [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) = 𝐼 ) ) |
102 |
58
|
eqg0el |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) → ( [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) = 𝐼 ↔ 𝑦 ∈ 𝐼 ) ) |
103 |
97 55 102
|
syl2anc |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → ( [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) = 𝐼 ↔ 𝑦 ∈ 𝐼 ) ) |
104 |
101 103
|
bitrd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → ( [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) = ( 0g ‘ 𝑄 ) ↔ 𝑦 ∈ 𝐼 ) ) |
105 |
100 104
|
orbi12d |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → ( ( [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) = ( 0g ‘ 𝑄 ) ∨ [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) = ( 0g ‘ 𝑄 ) ) ↔ ( 𝑥 ∈ 𝐼 ∨ 𝑦 ∈ 𝐼 ) ) ) |
106 |
105
|
ad4antr |
⊢ ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ) → ( ( [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) = ( 0g ‘ 𝑄 ) ∨ [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) = ( 0g ‘ 𝑄 ) ) ↔ ( 𝑥 ∈ 𝐼 ∨ 𝑦 ∈ 𝐼 ) ) ) |
107 |
95 106
|
mpbid |
⊢ ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ) → ( 𝑥 ∈ 𝐼 ∨ 𝑦 ∈ 𝐼 ) ) |
108 |
107
|
ex |
⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 → ( 𝑥 ∈ 𝐼 ∨ 𝑦 ∈ 𝐼 ) ) ) |
109 |
108
|
anasss |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 → ( 𝑥 ∈ 𝐼 ∨ 𝑦 ∈ 𝐼 ) ) ) |
110 |
109
|
ralrimivva |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 → ( 𝑥 ∈ 𝐼 ∨ 𝑦 ∈ 𝐼 ) ) ) |
111 |
13 71
|
prmidl2 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( 𝐼 ≠ ( Base ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 → ( 𝑥 ∈ 𝐼 ∨ 𝑦 ∈ 𝐼 ) ) ) ) → 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) |
112 |
3 4 36 110 111
|
syl22anc |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) → 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) |