Metamath Proof Explorer


Theorem qsidomlem1

Description: If the quotient ring of a commutative ring relative to an ideal is an integral domain, that ideal must be prime. (Contributed by Thierry Arnoux, 16-Jan-2024)

Ref Expression
Hypothesis qsidom.1 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) )
Assertion qsidomlem1 ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) → 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) )

Proof

Step Hyp Ref Expression
1 qsidom.1 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) )
2 crngring ( 𝑅 ∈ CRing → 𝑅 ∈ Ring )
3 2 ad2antrr ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) → 𝑅 ∈ Ring )
4 simplr ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) → 𝐼 ∈ ( LIdeal ‘ 𝑅 ) )
5 simpr ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝐼 = ( Base ‘ 𝑅 ) ) → 𝐼 = ( Base ‘ 𝑅 ) )
6 5 oveq2d ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝐼 = ( Base ‘ 𝑅 ) ) → ( 𝑅 ~QG 𝐼 ) = ( 𝑅 ~QG ( Base ‘ 𝑅 ) ) )
7 6 oveq2d ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝐼 = ( Base ‘ 𝑅 ) ) → ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) = ( 𝑅 /s ( 𝑅 ~QG ( Base ‘ 𝑅 ) ) ) )
8 1 7 syl5eq ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝐼 = ( Base ‘ 𝑅 ) ) → 𝑄 = ( 𝑅 /s ( 𝑅 ~QG ( Base ‘ 𝑅 ) ) ) )
9 8 fveq2d ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝐼 = ( Base ‘ 𝑅 ) ) → ( Base ‘ 𝑄 ) = ( Base ‘ ( 𝑅 /s ( 𝑅 ~QG ( Base ‘ 𝑅 ) ) ) ) )
10 ringgrp ( 𝑅 ∈ Ring → 𝑅 ∈ Grp )
11 2 10 syl ( 𝑅 ∈ CRing → 𝑅 ∈ Grp )
12 11 ad3antrrr ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝐼 = ( Base ‘ 𝑅 ) ) → 𝑅 ∈ Grp )
13 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
14 eqid ( 𝑅 /s ( 𝑅 ~QG ( Base ‘ 𝑅 ) ) ) = ( 𝑅 /s ( 𝑅 ~QG ( Base ‘ 𝑅 ) ) )
15 13 14 qustriv ( 𝑅 ∈ Grp → ( Base ‘ ( 𝑅 /s ( 𝑅 ~QG ( Base ‘ 𝑅 ) ) ) ) = { ( Base ‘ 𝑅 ) } )
16 12 15 syl ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝐼 = ( Base ‘ 𝑅 ) ) → ( Base ‘ ( 𝑅 /s ( 𝑅 ~QG ( Base ‘ 𝑅 ) ) ) ) = { ( Base ‘ 𝑅 ) } )
17 9 16 eqtrd ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝐼 = ( Base ‘ 𝑅 ) ) → ( Base ‘ 𝑄 ) = { ( Base ‘ 𝑅 ) } )
18 17 fveq2d ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝐼 = ( Base ‘ 𝑅 ) ) → ( ♯ ‘ ( Base ‘ 𝑄 ) ) = ( ♯ ‘ { ( Base ‘ 𝑅 ) } ) )
19 fvex ( Base ‘ 𝑅 ) ∈ V
20 hashsng ( ( Base ‘ 𝑅 ) ∈ V → ( ♯ ‘ { ( Base ‘ 𝑅 ) } ) = 1 )
21 19 20 ax-mp ( ♯ ‘ { ( Base ‘ 𝑅 ) } ) = 1
22 18 21 eqtrdi ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝐼 = ( Base ‘ 𝑅 ) ) → ( ♯ ‘ ( Base ‘ 𝑄 ) ) = 1 )
23 1red ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝐼 = ( Base ‘ 𝑅 ) ) → 1 ∈ ℝ )
24 isidom ( 𝑄 ∈ IDomn ↔ ( 𝑄 ∈ CRing ∧ 𝑄 ∈ Domn ) )
25 24 simprbi ( 𝑄 ∈ IDomn → 𝑄 ∈ Domn )
26 domnnzr ( 𝑄 ∈ Domn → 𝑄 ∈ NzRing )
27 25 26 syl ( 𝑄 ∈ IDomn → 𝑄 ∈ NzRing )
28 27 ad2antlr ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝐼 = ( Base ‘ 𝑅 ) ) → 𝑄 ∈ NzRing )
29 eqid ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 )
30 29 isnzr2hash ( 𝑄 ∈ NzRing ↔ ( 𝑄 ∈ Ring ∧ 1 < ( ♯ ‘ ( Base ‘ 𝑄 ) ) ) )
31 30 simprbi ( 𝑄 ∈ NzRing → 1 < ( ♯ ‘ ( Base ‘ 𝑄 ) ) )
32 28 31 syl ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝐼 = ( Base ‘ 𝑅 ) ) → 1 < ( ♯ ‘ ( Base ‘ 𝑄 ) ) )
33 23 32 gtned ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝐼 = ( Base ‘ 𝑅 ) ) → ( ♯ ‘ ( Base ‘ 𝑄 ) ) ≠ 1 )
34 33 neneqd ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝐼 = ( Base ‘ 𝑅 ) ) → ¬ ( ♯ ‘ ( Base ‘ 𝑄 ) ) = 1 )
35 22 34 pm2.65da ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) → ¬ 𝐼 = ( Base ‘ 𝑅 ) )
36 35 neqned ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) → 𝐼 ≠ ( Base ‘ 𝑅 ) )
37 25 ad4antlr ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r𝑅 ) 𝑦 ) ∈ 𝐼 ) → 𝑄 ∈ Domn )
38 ovex ( 𝑅 ~QG 𝐼 ) ∈ V
39 38 ecelqsi ( 𝑥 ∈ ( Base ‘ 𝑅 ) → [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ∈ ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝐼 ) ) )
40 39 ad3antlr ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r𝑅 ) 𝑦 ) ∈ 𝐼 ) → [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ∈ ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝐼 ) ) )
41 simp-5l ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r𝑅 ) 𝑦 ) ∈ 𝐼 ) → 𝑅 ∈ CRing )
42 1 a1i ( 𝑅 ∈ CRing → 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) )
43 eqidd ( 𝑅 ∈ CRing → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) )
44 ovexd ( 𝑅 ∈ CRing → ( 𝑅 ~QG 𝐼 ) ∈ V )
45 id ( 𝑅 ∈ CRing → 𝑅 ∈ CRing )
46 42 43 44 45 qusbas ( 𝑅 ∈ CRing → ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝐼 ) ) = ( Base ‘ 𝑄 ) )
47 41 46 syl ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r𝑅 ) 𝑦 ) ∈ 𝐼 ) → ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝐼 ) ) = ( Base ‘ 𝑄 ) )
48 40 47 eleqtrd ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r𝑅 ) 𝑦 ) ∈ 𝐼 ) → [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ∈ ( Base ‘ 𝑄 ) )
49 38 ecelqsi ( 𝑦 ∈ ( Base ‘ 𝑅 ) → [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ∈ ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝐼 ) ) )
50 49 ad2antlr ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r𝑅 ) 𝑦 ) ∈ 𝐼 ) → [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ∈ ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝐼 ) ) )
51 50 47 eleqtrd ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r𝑅 ) 𝑦 ) ∈ 𝐼 ) → [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ∈ ( Base ‘ 𝑄 ) )
52 41 2 10 3syl ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r𝑅 ) 𝑦 ) ∈ 𝐼 ) → 𝑅 ∈ Grp )
53 eqid ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 )
54 53 lidlsubg ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) )
55 2 54 sylan ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) )
56 55 ad4antr ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r𝑅 ) 𝑦 ) ∈ 𝐼 ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) )
57 simpr ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r𝑅 ) 𝑦 ) ∈ 𝐼 ) → ( 𝑥 ( .r𝑅 ) 𝑦 ) ∈ 𝐼 )
58 eqid ( 𝑅 ~QG 𝐼 ) = ( 𝑅 ~QG 𝐼 )
59 58 eqg0el ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) → ( [ ( 𝑥 ( .r𝑅 ) 𝑦 ) ] ( 𝑅 ~QG 𝐼 ) = 𝐼 ↔ ( 𝑥 ( .r𝑅 ) 𝑦 ) ∈ 𝐼 ) )
60 59 biimpar ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r𝑅 ) 𝑦 ) ∈ 𝐼 ) → [ ( 𝑥 ( .r𝑅 ) 𝑦 ) ] ( 𝑅 ~QG 𝐼 ) = 𝐼 )
61 52 56 57 60 syl21anc ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r𝑅 ) 𝑦 ) ∈ 𝐼 ) → [ ( 𝑥 ( .r𝑅 ) 𝑦 ) ] ( 𝑅 ~QG 𝐼 ) = 𝐼 )
62 1 a1i ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) )
63 eqidd ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) )
64 13 58 eqger ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) → ( 𝑅 ~QG 𝐼 ) Er ( Base ‘ 𝑅 ) )
65 55 64 syl ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → ( 𝑅 ~QG 𝐼 ) Er ( Base ‘ 𝑅 ) )
66 simpl ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑅 ∈ CRing )
67 53 crng2idl ( 𝑅 ∈ CRing → ( LIdeal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 ) )
68 67 eleq2d ( 𝑅 ∈ CRing → ( 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ↔ 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) )
69 68 biimpa ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
70 eqid ( 2Ideal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 )
71 eqid ( .r𝑅 ) = ( .r𝑅 )
72 13 58 70 71 2idlcpbl ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) → ( ( 𝑔 ( 𝑅 ~QG 𝐼 ) 𝑒 ( 𝑅 ~QG 𝐼 ) 𝑓 ) → ( 𝑔 ( .r𝑅 ) ) ( 𝑅 ~QG 𝐼 ) ( 𝑒 ( .r𝑅 ) 𝑓 ) ) )
73 2 69 72 syl2an2r ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → ( ( 𝑔 ( 𝑅 ~QG 𝐼 ) 𝑒 ( 𝑅 ~QG 𝐼 ) 𝑓 ) → ( 𝑔 ( .r𝑅 ) ) ( 𝑅 ~QG 𝐼 ) ( 𝑒 ( .r𝑅 ) 𝑓 ) ) )
74 2 ad2antrr ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( 𝑒 ∈ ( Base ‘ 𝑅 ) ∧ 𝑓 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑅 ∈ Ring )
75 simprl ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( 𝑒 ∈ ( Base ‘ 𝑅 ) ∧ 𝑓 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑒 ∈ ( Base ‘ 𝑅 ) )
76 simprr ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( 𝑒 ∈ ( Base ‘ 𝑅 ) ∧ 𝑓 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑓 ∈ ( Base ‘ 𝑅 ) )
77 13 71 ringcl ( ( 𝑅 ∈ Ring ∧ 𝑒 ∈ ( Base ‘ 𝑅 ) ∧ 𝑓 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑒 ( .r𝑅 ) 𝑓 ) ∈ ( Base ‘ 𝑅 ) )
78 74 75 76 77 syl3anc ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( 𝑒 ∈ ( Base ‘ 𝑅 ) ∧ 𝑓 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑒 ( .r𝑅 ) 𝑓 ) ∈ ( Base ‘ 𝑅 ) )
79 eqid ( .r𝑄 ) = ( .r𝑄 )
80 62 63 65 66 73 78 71 79 qusmulval ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ( .r𝑄 ) [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ) = [ ( 𝑥 ( .r𝑅 ) 𝑦 ) ] ( 𝑅 ~QG 𝐼 ) )
81 80 ad5ant134 ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r𝑅 ) 𝑦 ) ∈ 𝐼 ) → ( [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ( .r𝑄 ) [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ) = [ ( 𝑥 ( .r𝑅 ) 𝑦 ) ] ( 𝑅 ~QG 𝐼 ) )
82 lidlnsg ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) )
83 2 82 sylan ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) )
84 eqid ( 0g𝑅 ) = ( 0g𝑅 )
85 1 84 qus0 ( 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) → [ ( 0g𝑅 ) ] ( 𝑅 ~QG 𝐼 ) = ( 0g𝑄 ) )
86 83 85 syl ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → [ ( 0g𝑅 ) ] ( 𝑅 ~QG 𝐼 ) = ( 0g𝑄 ) )
87 13 58 84 eqgid ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) → [ ( 0g𝑅 ) ] ( 𝑅 ~QG 𝐼 ) = 𝐼 )
88 55 87 syl ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → [ ( 0g𝑅 ) ] ( 𝑅 ~QG 𝐼 ) = 𝐼 )
89 86 88 eqtr3d ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → ( 0g𝑄 ) = 𝐼 )
90 89 ad4antr ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r𝑅 ) 𝑦 ) ∈ 𝐼 ) → ( 0g𝑄 ) = 𝐼 )
91 61 81 90 3eqtr4d ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r𝑅 ) 𝑦 ) ∈ 𝐼 ) → ( [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ( .r𝑄 ) [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ) = ( 0g𝑄 ) )
92 eqid ( 0g𝑄 ) = ( 0g𝑄 )
93 29 79 92 domneq0 ( ( 𝑄 ∈ Domn ∧ [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ∈ ( Base ‘ 𝑄 ) ∧ [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ∈ ( Base ‘ 𝑄 ) ) → ( ( [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ( .r𝑄 ) [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ) = ( 0g𝑄 ) ↔ ( [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) = ( 0g𝑄 ) ∨ [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) = ( 0g𝑄 ) ) ) )
94 93 biimpa ( ( ( 𝑄 ∈ Domn ∧ [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ∈ ( Base ‘ 𝑄 ) ∧ [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ∈ ( Base ‘ 𝑄 ) ) ∧ ( [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ( .r𝑄 ) [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ) = ( 0g𝑄 ) ) → ( [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) = ( 0g𝑄 ) ∨ [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) = ( 0g𝑄 ) ) )
95 37 48 51 91 94 syl31anc ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r𝑅 ) 𝑦 ) ∈ 𝐼 ) → ( [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) = ( 0g𝑄 ) ∨ [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) = ( 0g𝑄 ) ) )
96 89 eqeq2d ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → ( [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) = ( 0g𝑄 ) ↔ [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) = 𝐼 ) )
97 66 2 10 3syl ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑅 ∈ Grp )
98 58 eqg0el ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) → ( [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) = 𝐼𝑥𝐼 ) )
99 97 55 98 syl2anc ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → ( [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) = 𝐼𝑥𝐼 ) )
100 96 99 bitrd ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → ( [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) = ( 0g𝑄 ) ↔ 𝑥𝐼 ) )
101 89 eqeq2d ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → ( [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) = ( 0g𝑄 ) ↔ [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) = 𝐼 ) )
102 58 eqg0el ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) → ( [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) = 𝐼𝑦𝐼 ) )
103 97 55 102 syl2anc ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → ( [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) = 𝐼𝑦𝐼 ) )
104 101 103 bitrd ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → ( [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) = ( 0g𝑄 ) ↔ 𝑦𝐼 ) )
105 100 104 orbi12d ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → ( ( [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) = ( 0g𝑄 ) ∨ [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) = ( 0g𝑄 ) ) ↔ ( 𝑥𝐼𝑦𝐼 ) ) )
106 105 ad4antr ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r𝑅 ) 𝑦 ) ∈ 𝐼 ) → ( ( [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) = ( 0g𝑄 ) ∨ [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) = ( 0g𝑄 ) ) ↔ ( 𝑥𝐼𝑦𝐼 ) ) )
107 95 106 mpbid ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r𝑅 ) 𝑦 ) ∈ 𝐼 ) → ( 𝑥𝐼𝑦𝐼 ) )
108 107 ex ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑥 ( .r𝑅 ) 𝑦 ) ∈ 𝐼 → ( 𝑥𝐼𝑦𝐼 ) ) )
109 108 anasss ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑥 ( .r𝑅 ) 𝑦 ) ∈ 𝐼 → ( 𝑥𝐼𝑦𝐼 ) ) )
110 109 ralrimivva ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r𝑅 ) 𝑦 ) ∈ 𝐼 → ( 𝑥𝐼𝑦𝐼 ) ) )
111 13 71 prmidl2 ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( 𝐼 ≠ ( Base ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r𝑅 ) 𝑦 ) ∈ 𝐼 → ( 𝑥𝐼𝑦𝐼 ) ) ) ) → 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) )
112 3 4 36 110 111 syl22anc ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) → 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) )