| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2idlcpblrng.x |
⊢ 𝑋 = ( Base ‘ 𝑅 ) |
| 2 |
|
2idlcpblrng.r |
⊢ 𝐸 = ( 𝑅 ~QG 𝑆 ) |
| 3 |
|
2idlcpblrng.i |
⊢ 𝐼 = ( 2Ideal ‘ 𝑅 ) |
| 4 |
|
2idlcpblrng.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 5 |
|
ringrng |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Rng ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → 𝑅 ∈ Rng ) |
| 7 |
|
simpr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → 𝑆 ∈ 𝐼 ) |
| 8 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
| 9 |
|
eqid |
⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) |
| 10 |
|
eqid |
⊢ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) = ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) |
| 11 |
8 9 10 3
|
2idlelb |
⊢ ( 𝑆 ∈ 𝐼 ↔ ( 𝑆 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑆 ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) ) |
| 12 |
11
|
simplbi |
⊢ ( 𝑆 ∈ 𝐼 → 𝑆 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 13 |
8
|
lidlsubg |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 14 |
12 13
|
sylan2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 15 |
1 2 3 4
|
2idlcpblrng |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → ( ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) → ( 𝐴 · 𝐵 ) 𝐸 ( 𝐶 · 𝐷 ) ) ) |
| 16 |
6 7 14 15
|
syl3anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → ( ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) → ( 𝐴 · 𝐵 ) 𝐸 ( 𝐶 · 𝐷 ) ) ) |