Step |
Hyp |
Ref |
Expression |
1 |
|
qsidom.1 |
⊢ 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) |
2 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
3 |
|
prmidlidl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) |
4 |
2 3
|
sylan |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) |
5 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
6 |
1 5
|
quscrng |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑄 ∈ CRing ) |
7 |
4 6
|
syldan |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑄 ∈ CRing ) |
8 |
5
|
crng2idl |
⊢ ( 𝑅 ∈ CRing → ( LIdeal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 ) ) |
9 |
8
|
eleq2d |
⊢ ( 𝑅 ∈ CRing → ( 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ↔ 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) ) |
10 |
9
|
biimpa |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
11 |
4 10
|
syldan |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
12 |
|
eqid |
⊢ ( 2Ideal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 ) |
13 |
1 12
|
qusring |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) → 𝑄 ∈ Ring ) |
14 |
2 11 13
|
syl2an2r |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑄 ∈ Ring ) |
15 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
16 |
|
eqid |
⊢ ( 0g ‘ 𝑄 ) = ( 0g ‘ 𝑄 ) |
17 |
15 16
|
ring0cl |
⊢ ( 𝑄 ∈ Ring → ( 0g ‘ 𝑄 ) ∈ ( Base ‘ 𝑄 ) ) |
18 |
14 17
|
syl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) → ( 0g ‘ 𝑄 ) ∈ ( Base ‘ 𝑄 ) ) |
19 |
18
|
snssd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) → { ( 0g ‘ 𝑄 ) } ⊆ ( Base ‘ 𝑄 ) ) |
20 |
|
lidlnsg |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) ) |
21 |
2 20
|
sylan |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) ) |
22 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
23 |
1 22
|
qus0 |
⊢ ( 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) → [ ( 0g ‘ 𝑅 ) ] ( 𝑅 ~QG 𝐼 ) = ( 0g ‘ 𝑄 ) ) |
24 |
21 23
|
syl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → [ ( 0g ‘ 𝑅 ) ] ( 𝑅 ~QG 𝐼 ) = ( 0g ‘ 𝑄 ) ) |
25 |
5
|
lidlsubg |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) |
26 |
2 25
|
sylan |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) |
27 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
28 |
|
eqid |
⊢ ( 𝑅 ~QG 𝐼 ) = ( 𝑅 ~QG 𝐼 ) |
29 |
27 28 22
|
eqgid |
⊢ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) → [ ( 0g ‘ 𝑅 ) ] ( 𝑅 ~QG 𝐼 ) = 𝐼 ) |
30 |
26 29
|
syl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → [ ( 0g ‘ 𝑅 ) ] ( 𝑅 ~QG 𝐼 ) = 𝐼 ) |
31 |
24 30
|
eqtr3d |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → ( 0g ‘ 𝑄 ) = 𝐼 ) |
32 |
4 31
|
syldan |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) → ( 0g ‘ 𝑄 ) = 𝐼 ) |
33 |
32
|
sneqd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) → { ( 0g ‘ 𝑄 ) } = { 𝐼 } ) |
34 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
35 |
27 34
|
isprmidlc |
⊢ ( 𝑅 ∈ CRing → ( 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ↔ ( 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝐼 ≠ ( Base ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 → ( 𝑥 ∈ 𝐼 ∨ 𝑦 ∈ 𝐼 ) ) ) ) ) |
36 |
35
|
biimpa |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) → ( 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝐼 ≠ ( Base ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 → ( 𝑥 ∈ 𝐼 ∨ 𝑦 ∈ 𝐼 ) ) ) ) |
37 |
36
|
simp2d |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝐼 ≠ ( Base ‘ 𝑅 ) ) |
38 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
39 |
2 38
|
syl |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Grp ) |
40 |
39
|
ad2antrr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ( Base ‘ 𝑄 ) = { 𝐼 } ) → 𝑅 ∈ Grp ) |
41 |
2
|
ad2antrr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ( Base ‘ 𝑄 ) = { 𝐼 } ) → 𝑅 ∈ Ring ) |
42 |
4
|
adantr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ( Base ‘ 𝑄 ) = { 𝐼 } ) → 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) |
43 |
41 42 25
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ( Base ‘ 𝑄 ) = { 𝐼 } ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) |
44 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ( Base ‘ 𝑄 ) = { 𝐼 } ) → ( Base ‘ 𝑄 ) = { 𝐼 } ) |
45 |
27 1
|
qustrivr |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ( Base ‘ 𝑄 ) = { 𝐼 } ) → 𝐼 = ( Base ‘ 𝑅 ) ) |
46 |
40 43 44 45
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ( Base ‘ 𝑄 ) = { 𝐼 } ) → 𝐼 = ( Base ‘ 𝑅 ) ) |
47 |
37 46
|
mteqand |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) → ( Base ‘ 𝑄 ) ≠ { 𝐼 } ) |
48 |
47
|
necomd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) → { 𝐼 } ≠ ( Base ‘ 𝑄 ) ) |
49 |
33 48
|
eqnetrd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) → { ( 0g ‘ 𝑄 ) } ≠ ( Base ‘ 𝑄 ) ) |
50 |
|
pssdifn0 |
⊢ ( ( { ( 0g ‘ 𝑄 ) } ⊆ ( Base ‘ 𝑄 ) ∧ { ( 0g ‘ 𝑄 ) } ≠ ( Base ‘ 𝑄 ) ) → ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ≠ ∅ ) |
51 |
19 49 50
|
syl2anc |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) → ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ≠ ∅ ) |
52 |
|
n0 |
⊢ ( ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) |
53 |
51 52
|
sylib |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) → ∃ 𝑥 𝑥 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) |
54 |
16 15
|
ringelnzr |
⊢ ( ( 𝑄 ∈ Ring ∧ 𝑥 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) → 𝑄 ∈ NzRing ) |
55 |
54
|
ex |
⊢ ( 𝑄 ∈ Ring → ( 𝑥 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) → 𝑄 ∈ NzRing ) ) |
56 |
55
|
exlimdv |
⊢ ( 𝑄 ∈ Ring → ( ∃ 𝑥 𝑥 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) → 𝑄 ∈ NzRing ) ) |
57 |
14 53 56
|
sylc |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑄 ∈ NzRing ) |
58 |
36
|
simp3d |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 → ( 𝑥 ∈ 𝐼 ∨ 𝑦 ∈ 𝐼 ) ) ) |
59 |
58
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑎 ( .r ‘ 𝑄 ) 𝑏 ) = ( 0g ‘ 𝑄 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 = [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 = [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 → ( 𝑥 ∈ 𝐼 ∨ 𝑦 ∈ 𝐼 ) ) ) |
60 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑎 ( .r ‘ 𝑄 ) 𝑏 ) = ( 0g ‘ 𝑄 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 = [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 = [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
61 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑎 ( .r ‘ 𝑄 ) 𝑏 ) = ( 0g ‘ 𝑄 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 = [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 = [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ) → 𝑦 ∈ ( Base ‘ 𝑅 ) ) |
62 |
|
simp-8l |
⊢ ( ( ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑎 ( .r ‘ 𝑄 ) 𝑏 ) = ( 0g ‘ 𝑄 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 = [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 = [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ) → 𝑅 ∈ CRing ) |
63 |
62 39
|
syl |
⊢ ( ( ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑎 ( .r ‘ 𝑄 ) 𝑏 ) = ( 0g ‘ 𝑄 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 = [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 = [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ) → 𝑅 ∈ Grp ) |
64 |
4
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑎 ( .r ‘ 𝑄 ) 𝑏 ) = ( 0g ‘ 𝑄 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 = [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 = [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ) → 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) |
65 |
62 64 26
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑎 ( .r ‘ 𝑄 ) 𝑏 ) = ( 0g ‘ 𝑄 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 = [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 = [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) |
66 |
1
|
a1i |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) ) |
67 |
|
eqidd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) ) |
68 |
27 28
|
eqger |
⊢ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) → ( 𝑅 ~QG 𝐼 ) Er ( Base ‘ 𝑅 ) ) |
69 |
26 68
|
syl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → ( 𝑅 ~QG 𝐼 ) Er ( Base ‘ 𝑅 ) ) |
70 |
|
simpl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑅 ∈ CRing ) |
71 |
27 28 12 34
|
2idlcpbl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) → ( ( 𝑔 ( 𝑅 ~QG 𝐼 ) 𝑒 ∧ ℎ ( 𝑅 ~QG 𝐼 ) 𝑓 ) → ( 𝑔 ( .r ‘ 𝑅 ) ℎ ) ( 𝑅 ~QG 𝐼 ) ( 𝑒 ( .r ‘ 𝑅 ) 𝑓 ) ) ) |
72 |
2 10 71
|
syl2an2r |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → ( ( 𝑔 ( 𝑅 ~QG 𝐼 ) 𝑒 ∧ ℎ ( 𝑅 ~QG 𝐼 ) 𝑓 ) → ( 𝑔 ( .r ‘ 𝑅 ) ℎ ) ( 𝑅 ~QG 𝐼 ) ( 𝑒 ( .r ‘ 𝑅 ) 𝑓 ) ) ) |
73 |
2
|
ad2antrr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( 𝑒 ∈ ( Base ‘ 𝑅 ) ∧ 𝑓 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑅 ∈ Ring ) |
74 |
|
simprl |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( 𝑒 ∈ ( Base ‘ 𝑅 ) ∧ 𝑓 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑒 ∈ ( Base ‘ 𝑅 ) ) |
75 |
|
simprr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( 𝑒 ∈ ( Base ‘ 𝑅 ) ∧ 𝑓 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑓 ∈ ( Base ‘ 𝑅 ) ) |
76 |
27 34
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑒 ∈ ( Base ‘ 𝑅 ) ∧ 𝑓 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑒 ( .r ‘ 𝑅 ) 𝑓 ) ∈ ( Base ‘ 𝑅 ) ) |
77 |
73 74 75 76
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( 𝑒 ∈ ( Base ‘ 𝑅 ) ∧ 𝑓 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑒 ( .r ‘ 𝑅 ) 𝑓 ) ∈ ( Base ‘ 𝑅 ) ) |
78 |
|
eqid |
⊢ ( .r ‘ 𝑄 ) = ( .r ‘ 𝑄 ) |
79 |
66 67 69 70 72 77 34 78
|
qusmulval |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ( .r ‘ 𝑄 ) [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ) = [ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ] ( 𝑅 ~QG 𝐼 ) ) |
80 |
62 64 60 61 79
|
syl211anc |
⊢ ( ( ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑎 ( .r ‘ 𝑄 ) 𝑏 ) = ( 0g ‘ 𝑄 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 = [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 = [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ) → ( [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ( .r ‘ 𝑄 ) [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ) = [ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ] ( 𝑅 ~QG 𝐼 ) ) |
81 |
|
simpr |
⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑎 ( .r ‘ 𝑄 ) 𝑏 ) = ( 0g ‘ 𝑄 ) ) → ( 𝑎 ( .r ‘ 𝑄 ) 𝑏 ) = ( 0g ‘ 𝑄 ) ) |
82 |
81
|
ad4antr |
⊢ ( ( ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑎 ( .r ‘ 𝑄 ) 𝑏 ) = ( 0g ‘ 𝑄 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 = [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 = [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ) → ( 𝑎 ( .r ‘ 𝑄 ) 𝑏 ) = ( 0g ‘ 𝑄 ) ) |
83 |
|
simpllr |
⊢ ( ( ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑎 ( .r ‘ 𝑄 ) 𝑏 ) = ( 0g ‘ 𝑄 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 = [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 = [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ) → 𝑎 = [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ) |
84 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑎 ( .r ‘ 𝑄 ) 𝑏 ) = ( 0g ‘ 𝑄 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 = [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 = [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ) → 𝑏 = [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ) |
85 |
83 84
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑎 ( .r ‘ 𝑄 ) 𝑏 ) = ( 0g ‘ 𝑄 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 = [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 = [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ) → ( 𝑎 ( .r ‘ 𝑄 ) 𝑏 ) = ( [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ( .r ‘ 𝑄 ) [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ) ) |
86 |
62 64 31
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑎 ( .r ‘ 𝑄 ) 𝑏 ) = ( 0g ‘ 𝑄 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 = [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 = [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ) → ( 0g ‘ 𝑄 ) = 𝐼 ) |
87 |
82 85 86
|
3eqtr3d |
⊢ ( ( ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑎 ( .r ‘ 𝑄 ) 𝑏 ) = ( 0g ‘ 𝑄 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 = [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 = [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ) → ( [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ( .r ‘ 𝑄 ) [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ) = 𝐼 ) |
88 |
80 87
|
eqtr3d |
⊢ ( ( ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑎 ( .r ‘ 𝑄 ) 𝑏 ) = ( 0g ‘ 𝑄 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 = [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 = [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ) → [ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ] ( 𝑅 ~QG 𝐼 ) = 𝐼 ) |
89 |
28
|
eqg0el |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) → ( [ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ] ( 𝑅 ~QG 𝐼 ) = 𝐼 ↔ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ) ) |
90 |
89
|
biimpa |
⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ [ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ] ( 𝑅 ~QG 𝐼 ) = 𝐼 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ) |
91 |
63 65 88 90
|
syl21anc |
⊢ ( ( ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑎 ( .r ‘ 𝑄 ) 𝑏 ) = ( 0g ‘ 𝑄 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 = [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 = [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ) |
92 |
|
rsp2 |
⊢ ( ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 → ( 𝑥 ∈ 𝐼 ∨ 𝑦 ∈ 𝐼 ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 → ( 𝑥 ∈ 𝐼 ∨ 𝑦 ∈ 𝐼 ) ) ) ) |
93 |
92
|
impl |
⊢ ( ( ( ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 → ( 𝑥 ∈ 𝐼 ∨ 𝑦 ∈ 𝐼 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 → ( 𝑥 ∈ 𝐼 ∨ 𝑦 ∈ 𝐼 ) ) ) |
94 |
93
|
imp |
⊢ ( ( ( ( ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 → ( 𝑥 ∈ 𝐼 ∨ 𝑦 ∈ 𝐼 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ) → ( 𝑥 ∈ 𝐼 ∨ 𝑦 ∈ 𝐼 ) ) |
95 |
59 60 61 91 94
|
syl1111anc |
⊢ ( ( ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑎 ( .r ‘ 𝑄 ) 𝑏 ) = ( 0g ‘ 𝑄 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 = [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 = [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ) → ( 𝑥 ∈ 𝐼 ∨ 𝑦 ∈ 𝐼 ) ) |
96 |
86
|
eqeq2d |
⊢ ( ( ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑎 ( .r ‘ 𝑄 ) 𝑏 ) = ( 0g ‘ 𝑄 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 = [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 = [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ) → ( 𝑎 = ( 0g ‘ 𝑄 ) ↔ 𝑎 = 𝐼 ) ) |
97 |
83
|
eqeq1d |
⊢ ( ( ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑎 ( .r ‘ 𝑄 ) 𝑏 ) = ( 0g ‘ 𝑄 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 = [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 = [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ) → ( 𝑎 = 𝐼 ↔ [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) = 𝐼 ) ) |
98 |
28
|
eqg0el |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) → ( [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) = 𝐼 ↔ 𝑥 ∈ 𝐼 ) ) |
99 |
63 65 98
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑎 ( .r ‘ 𝑄 ) 𝑏 ) = ( 0g ‘ 𝑄 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 = [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 = [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ) → ( [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) = 𝐼 ↔ 𝑥 ∈ 𝐼 ) ) |
100 |
96 97 99
|
3bitrrd |
⊢ ( ( ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑎 ( .r ‘ 𝑄 ) 𝑏 ) = ( 0g ‘ 𝑄 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 = [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 = [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ) → ( 𝑥 ∈ 𝐼 ↔ 𝑎 = ( 0g ‘ 𝑄 ) ) ) |
101 |
86
|
eqeq2d |
⊢ ( ( ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑎 ( .r ‘ 𝑄 ) 𝑏 ) = ( 0g ‘ 𝑄 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 = [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 = [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ) → ( 𝑏 = ( 0g ‘ 𝑄 ) ↔ 𝑏 = 𝐼 ) ) |
102 |
84
|
eqeq1d |
⊢ ( ( ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑎 ( .r ‘ 𝑄 ) 𝑏 ) = ( 0g ‘ 𝑄 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 = [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 = [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ) → ( 𝑏 = 𝐼 ↔ [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) = 𝐼 ) ) |
103 |
28
|
eqg0el |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) → ( [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) = 𝐼 ↔ 𝑦 ∈ 𝐼 ) ) |
104 |
63 65 103
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑎 ( .r ‘ 𝑄 ) 𝑏 ) = ( 0g ‘ 𝑄 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 = [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 = [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ) → ( [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) = 𝐼 ↔ 𝑦 ∈ 𝐼 ) ) |
105 |
101 102 104
|
3bitrrd |
⊢ ( ( ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑎 ( .r ‘ 𝑄 ) 𝑏 ) = ( 0g ‘ 𝑄 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 = [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 = [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ) → ( 𝑦 ∈ 𝐼 ↔ 𝑏 = ( 0g ‘ 𝑄 ) ) ) |
106 |
100 105
|
orbi12d |
⊢ ( ( ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑎 ( .r ‘ 𝑄 ) 𝑏 ) = ( 0g ‘ 𝑄 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 = [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 = [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ) → ( ( 𝑥 ∈ 𝐼 ∨ 𝑦 ∈ 𝐼 ) ↔ ( 𝑎 = ( 0g ‘ 𝑄 ) ∨ 𝑏 = ( 0g ‘ 𝑄 ) ) ) ) |
107 |
95 106
|
mpbid |
⊢ ( ( ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑎 ( .r ‘ 𝑄 ) 𝑏 ) = ( 0g ‘ 𝑄 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 = [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 = [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ) → ( 𝑎 = ( 0g ‘ 𝑄 ) ∨ 𝑏 = ( 0g ‘ 𝑄 ) ) ) |
108 |
|
simplr |
⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑎 ( .r ‘ 𝑄 ) 𝑏 ) = ( 0g ‘ 𝑄 ) ) → 𝑏 ∈ ( Base ‘ 𝑄 ) ) |
109 |
1
|
a1i |
⊢ ( 𝑅 ∈ CRing → 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) ) |
110 |
|
eqidd |
⊢ ( 𝑅 ∈ CRing → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) ) |
111 |
|
ovexd |
⊢ ( 𝑅 ∈ CRing → ( 𝑅 ~QG 𝐼 ) ∈ V ) |
112 |
|
id |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ CRing ) |
113 |
109 110 111 112
|
qusbas |
⊢ ( 𝑅 ∈ CRing → ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝐼 ) ) = ( Base ‘ 𝑄 ) ) |
114 |
113
|
ad4antr |
⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑎 ( .r ‘ 𝑄 ) 𝑏 ) = ( 0g ‘ 𝑄 ) ) → ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝐼 ) ) = ( Base ‘ 𝑄 ) ) |
115 |
108 114
|
eleqtrrd |
⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑎 ( .r ‘ 𝑄 ) 𝑏 ) = ( 0g ‘ 𝑄 ) ) → 𝑏 ∈ ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝐼 ) ) ) |
116 |
115
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑎 ( .r ‘ 𝑄 ) 𝑏 ) = ( 0g ‘ 𝑄 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 = [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ) → 𝑏 ∈ ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝐼 ) ) ) |
117 |
|
elqsi |
⊢ ( 𝑏 ∈ ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝐼 ) ) → ∃ 𝑦 ∈ ( Base ‘ 𝑅 ) 𝑏 = [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ) |
118 |
116 117
|
syl |
⊢ ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑎 ( .r ‘ 𝑄 ) 𝑏 ) = ( 0g ‘ 𝑄 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 = [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ) → ∃ 𝑦 ∈ ( Base ‘ 𝑅 ) 𝑏 = [ 𝑦 ] ( 𝑅 ~QG 𝐼 ) ) |
119 |
107 118
|
r19.29a |
⊢ ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑎 ( .r ‘ 𝑄 ) 𝑏 ) = ( 0g ‘ 𝑄 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 = [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ) → ( 𝑎 = ( 0g ‘ 𝑄 ) ∨ 𝑏 = ( 0g ‘ 𝑄 ) ) ) |
120 |
|
simpllr |
⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑎 ( .r ‘ 𝑄 ) 𝑏 ) = ( 0g ‘ 𝑄 ) ) → 𝑎 ∈ ( Base ‘ 𝑄 ) ) |
121 |
120 114
|
eleqtrrd |
⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑎 ( .r ‘ 𝑄 ) 𝑏 ) = ( 0g ‘ 𝑄 ) ) → 𝑎 ∈ ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝐼 ) ) ) |
122 |
|
elqsi |
⊢ ( 𝑎 ∈ ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝐼 ) ) → ∃ 𝑥 ∈ ( Base ‘ 𝑅 ) 𝑎 = [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ) |
123 |
121 122
|
syl |
⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑎 ( .r ‘ 𝑄 ) 𝑏 ) = ( 0g ‘ 𝑄 ) ) → ∃ 𝑥 ∈ ( Base ‘ 𝑅 ) 𝑎 = [ 𝑥 ] ( 𝑅 ~QG 𝐼 ) ) |
124 |
119 123
|
r19.29a |
⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑎 ( .r ‘ 𝑄 ) 𝑏 ) = ( 0g ‘ 𝑄 ) ) → ( 𝑎 = ( 0g ‘ 𝑄 ) ∨ 𝑏 = ( 0g ‘ 𝑄 ) ) ) |
125 |
124
|
ex |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑄 ) ) → ( ( 𝑎 ( .r ‘ 𝑄 ) 𝑏 ) = ( 0g ‘ 𝑄 ) → ( 𝑎 = ( 0g ‘ 𝑄 ) ∨ 𝑏 = ( 0g ‘ 𝑄 ) ) ) ) |
126 |
125
|
anasss |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑄 ) ∧ 𝑏 ∈ ( Base ‘ 𝑄 ) ) ) → ( ( 𝑎 ( .r ‘ 𝑄 ) 𝑏 ) = ( 0g ‘ 𝑄 ) → ( 𝑎 = ( 0g ‘ 𝑄 ) ∨ 𝑏 = ( 0g ‘ 𝑄 ) ) ) ) |
127 |
126
|
ralrimivva |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) → ∀ 𝑎 ∈ ( Base ‘ 𝑄 ) ∀ 𝑏 ∈ ( Base ‘ 𝑄 ) ( ( 𝑎 ( .r ‘ 𝑄 ) 𝑏 ) = ( 0g ‘ 𝑄 ) → ( 𝑎 = ( 0g ‘ 𝑄 ) ∨ 𝑏 = ( 0g ‘ 𝑄 ) ) ) ) |
128 |
15 78 16
|
isdomn |
⊢ ( 𝑄 ∈ Domn ↔ ( 𝑄 ∈ NzRing ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑄 ) ∀ 𝑏 ∈ ( Base ‘ 𝑄 ) ( ( 𝑎 ( .r ‘ 𝑄 ) 𝑏 ) = ( 0g ‘ 𝑄 ) → ( 𝑎 = ( 0g ‘ 𝑄 ) ∨ 𝑏 = ( 0g ‘ 𝑄 ) ) ) ) ) |
129 |
57 127 128
|
sylanbrc |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑄 ∈ Domn ) |
130 |
|
isidom |
⊢ ( 𝑄 ∈ IDomn ↔ ( 𝑄 ∈ CRing ∧ 𝑄 ∈ Domn ) ) |
131 |
7 129 130
|
sylanbrc |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑄 ∈ IDomn ) |