Metamath Proof Explorer


Theorem qsidom

Description: An ideal I in the commutative ring R is prime if and only if the factor ring Q is an integral domain. (Contributed by Thierry Arnoux, 16-Jan-2024)

Ref Expression
Hypothesis qsidom.1 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) )
Assertion qsidom ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → ( 𝑄 ∈ IDomn ↔ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) )

Proof

Step Hyp Ref Expression
1 qsidom.1 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) )
2 1 qsidomlem1 ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑄 ∈ IDomn ) → 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) )
3 1 qsidomlem2 ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑄 ∈ IDomn )
4 3 adantlr ( ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑄 ∈ IDomn )
5 2 4 impbida ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → ( 𝑄 ∈ IDomn ↔ 𝐼 ∈ ( PrmIdeal ‘ 𝑅 ) ) )