| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qsnzr.q |
⊢ 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) |
| 2 |
|
qsnzr.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 3 |
|
qsnzr.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 4 |
|
qsnzr.z |
⊢ ( 𝜑 → 𝑅 ∈ NzRing ) |
| 5 |
|
qsnzr.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
| 6 |
|
qsnzr.2 |
⊢ ( 𝜑 → 𝐼 ≠ 𝐵 ) |
| 7 |
|
eqid |
⊢ ( 2Ideal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 ) |
| 8 |
1 7
|
qusring |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) → 𝑄 ∈ Ring ) |
| 9 |
3 5 8
|
syl2anc |
⊢ ( 𝜑 → 𝑄 ∈ Ring ) |
| 10 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
| 11 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 12 |
|
eqid |
⊢ ( invg ‘ 𝑅 ) = ( invg ‘ 𝑅 ) |
| 13 |
11 12
|
grpinvid |
⊢ ( 𝑅 ∈ Grp → ( ( invg ‘ 𝑅 ) ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 14 |
3 10 13
|
3syl |
⊢ ( 𝜑 → ( ( invg ‘ 𝑅 ) ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 15 |
14
|
oveq1d |
⊢ ( 𝜑 → ( ( ( invg ‘ 𝑅 ) ‘ ( 0g ‘ 𝑅 ) ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
| 16 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 17 |
3 10
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 18 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 19 |
2 18
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 20 |
3 19
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 21 |
2 16 11 17 20
|
grplidd |
⊢ ( 𝜑 → ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑅 ) ) |
| 22 |
15 21
|
eqtrd |
⊢ ( 𝜑 → ( ( ( invg ‘ 𝑅 ) ‘ ( 0g ‘ 𝑅 ) ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑅 ) ) |
| 23 |
5
|
2idllidld |
⊢ ( 𝜑 → 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 24 |
2 18
|
pridln1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝐼 ≠ 𝐵 ) → ¬ ( 1r ‘ 𝑅 ) ∈ 𝐼 ) |
| 25 |
3 23 6 24
|
syl3anc |
⊢ ( 𝜑 → ¬ ( 1r ‘ 𝑅 ) ∈ 𝐼 ) |
| 26 |
22 25
|
eqneltrd |
⊢ ( 𝜑 → ¬ ( ( ( invg ‘ 𝑅 ) ‘ ( 0g ‘ 𝑅 ) ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ∈ 𝐼 ) |
| 27 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 1r ‘ 𝑅 ) ( 𝑅 ~QG 𝐼 ) ( 0g ‘ 𝑅 ) ) → 𝑅 ∈ Ring ) |
| 28 |
|
lidlnsg |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) ) |
| 29 |
3 23 28
|
syl2anc |
⊢ ( 𝜑 → 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) ) |
| 30 |
|
nsgsubg |
⊢ ( 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 31 |
29 30
|
syl |
⊢ ( 𝜑 → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 32 |
2
|
subgss |
⊢ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) → 𝐼 ⊆ 𝐵 ) |
| 33 |
31 32
|
syl |
⊢ ( 𝜑 → 𝐼 ⊆ 𝐵 ) |
| 34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ ( 1r ‘ 𝑅 ) ( 𝑅 ~QG 𝐼 ) ( 0g ‘ 𝑅 ) ) → 𝐼 ⊆ 𝐵 ) |
| 35 |
|
eqid |
⊢ ( 𝑅 ~QG 𝐼 ) = ( 𝑅 ~QG 𝐼 ) |
| 36 |
2 35
|
eqger |
⊢ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) → ( 𝑅 ~QG 𝐼 ) Er 𝐵 ) |
| 37 |
31 36
|
syl |
⊢ ( 𝜑 → ( 𝑅 ~QG 𝐼 ) Er 𝐵 ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ ( 1r ‘ 𝑅 ) ( 𝑅 ~QG 𝐼 ) ( 0g ‘ 𝑅 ) ) → ( 𝑅 ~QG 𝐼 ) Er 𝐵 ) |
| 39 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 1r ‘ 𝑅 ) ( 𝑅 ~QG 𝐼 ) ( 0g ‘ 𝑅 ) ) → ( 1r ‘ 𝑅 ) ( 𝑅 ~QG 𝐼 ) ( 0g ‘ 𝑅 ) ) |
| 40 |
38 39
|
ersym |
⊢ ( ( 𝜑 ∧ ( 1r ‘ 𝑅 ) ( 𝑅 ~QG 𝐼 ) ( 0g ‘ 𝑅 ) ) → ( 0g ‘ 𝑅 ) ( 𝑅 ~QG 𝐼 ) ( 1r ‘ 𝑅 ) ) |
| 41 |
2 12 16 35
|
eqgval |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ⊆ 𝐵 ) → ( ( 0g ‘ 𝑅 ) ( 𝑅 ~QG 𝐼 ) ( 1r ‘ 𝑅 ) ↔ ( ( 0g ‘ 𝑅 ) ∈ 𝐵 ∧ ( 1r ‘ 𝑅 ) ∈ 𝐵 ∧ ( ( ( invg ‘ 𝑅 ) ‘ ( 0g ‘ 𝑅 ) ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ∈ 𝐼 ) ) ) |
| 42 |
41
|
biimpa |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ⊆ 𝐵 ) ∧ ( 0g ‘ 𝑅 ) ( 𝑅 ~QG 𝐼 ) ( 1r ‘ 𝑅 ) ) → ( ( 0g ‘ 𝑅 ) ∈ 𝐵 ∧ ( 1r ‘ 𝑅 ) ∈ 𝐵 ∧ ( ( ( invg ‘ 𝑅 ) ‘ ( 0g ‘ 𝑅 ) ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ∈ 𝐼 ) ) |
| 43 |
42
|
simp3d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ⊆ 𝐵 ) ∧ ( 0g ‘ 𝑅 ) ( 𝑅 ~QG 𝐼 ) ( 1r ‘ 𝑅 ) ) → ( ( ( invg ‘ 𝑅 ) ‘ ( 0g ‘ 𝑅 ) ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ∈ 𝐼 ) |
| 44 |
27 34 40 43
|
syl21anc |
⊢ ( ( 𝜑 ∧ ( 1r ‘ 𝑅 ) ( 𝑅 ~QG 𝐼 ) ( 0g ‘ 𝑅 ) ) → ( ( ( invg ‘ 𝑅 ) ‘ ( 0g ‘ 𝑅 ) ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ∈ 𝐼 ) |
| 45 |
26 44
|
mtand |
⊢ ( 𝜑 → ¬ ( 1r ‘ 𝑅 ) ( 𝑅 ~QG 𝐼 ) ( 0g ‘ 𝑅 ) ) |
| 46 |
37 20
|
erth |
⊢ ( 𝜑 → ( ( 1r ‘ 𝑅 ) ( 𝑅 ~QG 𝐼 ) ( 0g ‘ 𝑅 ) ↔ [ ( 1r ‘ 𝑅 ) ] ( 𝑅 ~QG 𝐼 ) = [ ( 0g ‘ 𝑅 ) ] ( 𝑅 ~QG 𝐼 ) ) ) |
| 47 |
45 46
|
mtbid |
⊢ ( 𝜑 → ¬ [ ( 1r ‘ 𝑅 ) ] ( 𝑅 ~QG 𝐼 ) = [ ( 0g ‘ 𝑅 ) ] ( 𝑅 ~QG 𝐼 ) ) |
| 48 |
47
|
neqned |
⊢ ( 𝜑 → [ ( 1r ‘ 𝑅 ) ] ( 𝑅 ~QG 𝐼 ) ≠ [ ( 0g ‘ 𝑅 ) ] ( 𝑅 ~QG 𝐼 ) ) |
| 49 |
1 7 18
|
qus1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) → ( 𝑄 ∈ Ring ∧ [ ( 1r ‘ 𝑅 ) ] ( 𝑅 ~QG 𝐼 ) = ( 1r ‘ 𝑄 ) ) ) |
| 50 |
3 5 49
|
syl2anc |
⊢ ( 𝜑 → ( 𝑄 ∈ Ring ∧ [ ( 1r ‘ 𝑅 ) ] ( 𝑅 ~QG 𝐼 ) = ( 1r ‘ 𝑄 ) ) ) |
| 51 |
50
|
simprd |
⊢ ( 𝜑 → [ ( 1r ‘ 𝑅 ) ] ( 𝑅 ~QG 𝐼 ) = ( 1r ‘ 𝑄 ) ) |
| 52 |
1 11
|
qus0 |
⊢ ( 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) → [ ( 0g ‘ 𝑅 ) ] ( 𝑅 ~QG 𝐼 ) = ( 0g ‘ 𝑄 ) ) |
| 53 |
29 52
|
syl |
⊢ ( 𝜑 → [ ( 0g ‘ 𝑅 ) ] ( 𝑅 ~QG 𝐼 ) = ( 0g ‘ 𝑄 ) ) |
| 54 |
48 51 53
|
3netr3d |
⊢ ( 𝜑 → ( 1r ‘ 𝑄 ) ≠ ( 0g ‘ 𝑄 ) ) |
| 55 |
|
eqid |
⊢ ( 1r ‘ 𝑄 ) = ( 1r ‘ 𝑄 ) |
| 56 |
|
eqid |
⊢ ( 0g ‘ 𝑄 ) = ( 0g ‘ 𝑄 ) |
| 57 |
55 56
|
isnzr |
⊢ ( 𝑄 ∈ NzRing ↔ ( 𝑄 ∈ Ring ∧ ( 1r ‘ 𝑄 ) ≠ ( 0g ‘ 𝑄 ) ) ) |
| 58 |
9 54 57
|
sylanbrc |
⊢ ( 𝜑 → 𝑄 ∈ NzRing ) |