Step |
Hyp |
Ref |
Expression |
1 |
|
ssdifidl.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
ssdifidl.2 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
3 |
|
ssdifidl.3 |
⊢ ( 𝜑 → 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) |
4 |
|
ssdifidl.4 |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
5 |
|
ssdifidl.5 |
⊢ ( 𝜑 → ( 𝑆 ∩ 𝐼 ) = ∅ ) |
6 |
|
ssdifidl.6 |
⊢ 𝑃 = { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆 ∩ 𝑝 ) = ∅ ∧ 𝐼 ⊆ 𝑝 ) } |
7 |
|
ssdifidllem.7 |
⊢ ( 𝜑 → 𝑍 ⊆ 𝑃 ) |
8 |
|
ssdifidllem.8 |
⊢ ( 𝜑 → 𝑍 ≠ ∅ ) |
9 |
|
ssdifidllem.9 |
⊢ ( 𝜑 → [⊊] Or 𝑍 ) |
10 |
|
ineq2 |
⊢ ( 𝑝 = ∪ 𝑍 → ( 𝑆 ∩ 𝑝 ) = ( 𝑆 ∩ ∪ 𝑍 ) ) |
11 |
10
|
eqeq1d |
⊢ ( 𝑝 = ∪ 𝑍 → ( ( 𝑆 ∩ 𝑝 ) = ∅ ↔ ( 𝑆 ∩ ∪ 𝑍 ) = ∅ ) ) |
12 |
|
sseq2 |
⊢ ( 𝑝 = ∪ 𝑍 → ( 𝐼 ⊆ 𝑝 ↔ 𝐼 ⊆ ∪ 𝑍 ) ) |
13 |
11 12
|
anbi12d |
⊢ ( 𝑝 = ∪ 𝑍 → ( ( ( 𝑆 ∩ 𝑝 ) = ∅ ∧ 𝐼 ⊆ 𝑝 ) ↔ ( ( 𝑆 ∩ ∪ 𝑍 ) = ∅ ∧ 𝐼 ⊆ ∪ 𝑍 ) ) ) |
14 |
6
|
ssrab3 |
⊢ 𝑃 ⊆ ( LIdeal ‘ 𝑅 ) |
15 |
7 14
|
sstrdi |
⊢ ( 𝜑 → 𝑍 ⊆ ( LIdeal ‘ 𝑅 ) ) |
16 |
15
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) |
17 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
18 |
1 17
|
lidlss |
⊢ ( 𝑗 ∈ ( LIdeal ‘ 𝑅 ) → 𝑗 ⊆ 𝐵 ) |
19 |
16 18
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ⊆ 𝐵 ) |
20 |
19
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑗 ∈ 𝑍 𝑗 ⊆ 𝐵 ) |
21 |
|
unissb |
⊢ ( ∪ 𝑍 ⊆ 𝐵 ↔ ∀ 𝑗 ∈ 𝑍 𝑗 ⊆ 𝐵 ) |
22 |
20 21
|
sylibr |
⊢ ( 𝜑 → ∪ 𝑍 ⊆ 𝐵 ) |
23 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
24 |
17 23
|
lidl0cl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) → ( 0g ‘ 𝑅 ) ∈ 𝑗 ) |
25 |
2 16 24
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 0g ‘ 𝑅 ) ∈ 𝑗 ) |
26 |
|
n0i |
⊢ ( ( 0g ‘ 𝑅 ) ∈ 𝑗 → ¬ 𝑗 = ∅ ) |
27 |
25 26
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ¬ 𝑗 = ∅ ) |
28 |
27
|
reximdva0 |
⊢ ( ( 𝜑 ∧ 𝑍 ≠ ∅ ) → ∃ 𝑗 ∈ 𝑍 ¬ 𝑗 = ∅ ) |
29 |
8 28
|
mpdan |
⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ¬ 𝑗 = ∅ ) |
30 |
|
rexnal |
⊢ ( ∃ 𝑗 ∈ 𝑍 ¬ 𝑗 = ∅ ↔ ¬ ∀ 𝑗 ∈ 𝑍 𝑗 = ∅ ) |
31 |
29 30
|
sylib |
⊢ ( 𝜑 → ¬ ∀ 𝑗 ∈ 𝑍 𝑗 = ∅ ) |
32 |
|
uni0c |
⊢ ( ∪ 𝑍 = ∅ ↔ ∀ 𝑗 ∈ 𝑍 𝑗 = ∅ ) |
33 |
32
|
necon3abii |
⊢ ( ∪ 𝑍 ≠ ∅ ↔ ¬ ∀ 𝑗 ∈ 𝑍 𝑗 = ∅ ) |
34 |
31 33
|
sylibr |
⊢ ( 𝜑 → ∪ 𝑍 ≠ ∅ ) |
35 |
|
eluni2 |
⊢ ( 𝑎 ∈ ∪ 𝑍 ↔ ∃ 𝑖 ∈ 𝑍 𝑎 ∈ 𝑖 ) |
36 |
|
eluni2 |
⊢ ( 𝑏 ∈ ∪ 𝑍 ↔ ∃ 𝑗 ∈ 𝑍 𝑏 ∈ 𝑗 ) |
37 |
35 36
|
anbi12i |
⊢ ( ( 𝑎 ∈ ∪ 𝑍 ∧ 𝑏 ∈ ∪ 𝑍 ) ↔ ( ∃ 𝑖 ∈ 𝑍 𝑎 ∈ 𝑖 ∧ ∃ 𝑗 ∈ 𝑍 𝑏 ∈ 𝑗 ) ) |
38 |
|
an32 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ∃ 𝑖 ∈ 𝑍 𝑎 ∈ 𝑖 ) ∧ 𝑗 ∈ 𝑍 ) ↔ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑗 ∈ 𝑍 ) ∧ ∃ 𝑖 ∈ 𝑍 𝑎 ∈ 𝑖 ) ) |
39 |
2
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑏 ∈ 𝑗 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑎 ∈ 𝑖 ) ∧ 𝑖 ⊆ 𝑗 ) → 𝑅 ∈ Ring ) |
40 |
15
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑏 ∈ 𝑗 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑎 ∈ 𝑖 ) ∧ 𝑖 ⊆ 𝑗 ) → 𝑍 ⊆ ( LIdeal ‘ 𝑅 ) ) |
41 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑏 ∈ 𝑗 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑎 ∈ 𝑖 ) ∧ 𝑖 ⊆ 𝑗 ) → 𝑗 ∈ 𝑍 ) |
42 |
40 41
|
sseldd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑏 ∈ 𝑗 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑎 ∈ 𝑖 ) ∧ 𝑖 ⊆ 𝑗 ) → 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) |
43 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
44 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑏 ∈ 𝑗 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑎 ∈ 𝑖 ) ∧ 𝑖 ⊆ 𝑗 ) → 𝑥 ∈ 𝐵 ) |
45 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑏 ∈ 𝑗 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑎 ∈ 𝑖 ) ∧ 𝑖 ⊆ 𝑗 ) → 𝑖 ⊆ 𝑗 ) |
46 |
|
simplr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑏 ∈ 𝑗 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑎 ∈ 𝑖 ) ∧ 𝑖 ⊆ 𝑗 ) → 𝑎 ∈ 𝑖 ) |
47 |
45 46
|
sseldd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑏 ∈ 𝑗 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑎 ∈ 𝑖 ) ∧ 𝑖 ⊆ 𝑗 ) → 𝑎 ∈ 𝑗 ) |
48 |
17 1 43 39 42 44 47
|
lidlmcld |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑏 ∈ 𝑗 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑎 ∈ 𝑖 ) ∧ 𝑖 ⊆ 𝑗 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ∈ 𝑗 ) |
49 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑏 ∈ 𝑗 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑎 ∈ 𝑖 ) ∧ 𝑖 ⊆ 𝑗 ) → 𝑏 ∈ 𝑗 ) |
50 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
51 |
17 50
|
lidlacl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ∈ 𝑗 ∧ 𝑏 ∈ 𝑗 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝑗 ) |
52 |
39 42 48 49 51
|
syl22anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑏 ∈ 𝑗 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑎 ∈ 𝑖 ) ∧ 𝑖 ⊆ 𝑗 ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝑗 ) |
53 |
|
elunii |
⊢ ( ( ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝑗 ∧ 𝑗 ∈ 𝑍 ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ ∪ 𝑍 ) |
54 |
52 41 53
|
syl2anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑏 ∈ 𝑗 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑎 ∈ 𝑖 ) ∧ 𝑖 ⊆ 𝑗 ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ ∪ 𝑍 ) |
55 |
2
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑏 ∈ 𝑗 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑎 ∈ 𝑖 ) ∧ 𝑗 ⊆ 𝑖 ) → 𝑅 ∈ Ring ) |
56 |
15
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑏 ∈ 𝑗 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑎 ∈ 𝑖 ) ∧ 𝑗 ⊆ 𝑖 ) → 𝑍 ⊆ ( LIdeal ‘ 𝑅 ) ) |
57 |
|
simpllr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑏 ∈ 𝑗 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑎 ∈ 𝑖 ) ∧ 𝑗 ⊆ 𝑖 ) → 𝑖 ∈ 𝑍 ) |
58 |
56 57
|
sseldd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑏 ∈ 𝑗 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑎 ∈ 𝑖 ) ∧ 𝑗 ⊆ 𝑖 ) → 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) |
59 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑏 ∈ 𝑗 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑎 ∈ 𝑖 ) ∧ 𝑗 ⊆ 𝑖 ) → 𝑥 ∈ 𝐵 ) |
60 |
|
simplr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑏 ∈ 𝑗 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑎 ∈ 𝑖 ) ∧ 𝑗 ⊆ 𝑖 ) → 𝑎 ∈ 𝑖 ) |
61 |
17 1 43 55 58 59 60
|
lidlmcld |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑏 ∈ 𝑗 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑎 ∈ 𝑖 ) ∧ 𝑗 ⊆ 𝑖 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ∈ 𝑖 ) |
62 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑏 ∈ 𝑗 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑎 ∈ 𝑖 ) ∧ 𝑗 ⊆ 𝑖 ) → 𝑗 ⊆ 𝑖 ) |
63 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑏 ∈ 𝑗 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑎 ∈ 𝑖 ) ∧ 𝑗 ⊆ 𝑖 ) → 𝑏 ∈ 𝑗 ) |
64 |
62 63
|
sseldd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑏 ∈ 𝑗 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑎 ∈ 𝑖 ) ∧ 𝑗 ⊆ 𝑖 ) → 𝑏 ∈ 𝑖 ) |
65 |
17 50
|
lidlacl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ∈ 𝑖 ∧ 𝑏 ∈ 𝑖 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝑖 ) |
66 |
55 58 61 64 65
|
syl22anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑏 ∈ 𝑗 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑎 ∈ 𝑖 ) ∧ 𝑗 ⊆ 𝑖 ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝑖 ) |
67 |
|
elunii |
⊢ ( ( ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝑖 ∧ 𝑖 ∈ 𝑍 ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ ∪ 𝑍 ) |
68 |
66 57 67
|
syl2anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑏 ∈ 𝑗 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑎 ∈ 𝑖 ) ∧ 𝑗 ⊆ 𝑖 ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ ∪ 𝑍 ) |
69 |
9
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑏 ∈ 𝑗 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑎 ∈ 𝑖 ) → [⊊] Or 𝑍 ) |
70 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑏 ∈ 𝑗 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑎 ∈ 𝑖 ) → 𝑖 ∈ 𝑍 ) |
71 |
|
simp-4r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑏 ∈ 𝑗 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑎 ∈ 𝑖 ) → 𝑗 ∈ 𝑍 ) |
72 |
|
sorpssi |
⊢ ( ( [⊊] Or 𝑍 ∧ ( 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ 𝑍 ) ) → ( 𝑖 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑖 ) ) |
73 |
69 70 71 72
|
syl12anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑏 ∈ 𝑗 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑎 ∈ 𝑖 ) → ( 𝑖 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑖 ) ) |
74 |
54 68 73
|
mpjaodan |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑏 ∈ 𝑗 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑎 ∈ 𝑖 ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ ∪ 𝑍 ) |
75 |
74
|
r19.29an |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑏 ∈ 𝑗 ) ∧ ∃ 𝑖 ∈ 𝑍 𝑎 ∈ 𝑖 ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ ∪ 𝑍 ) |
76 |
75
|
an32s |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑗 ∈ 𝑍 ) ∧ ∃ 𝑖 ∈ 𝑍 𝑎 ∈ 𝑖 ) ∧ 𝑏 ∈ 𝑗 ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ ∪ 𝑍 ) |
77 |
38 76
|
sylanb |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ∃ 𝑖 ∈ 𝑍 𝑎 ∈ 𝑖 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑏 ∈ 𝑗 ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ ∪ 𝑍 ) |
78 |
77
|
r19.29an |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ∃ 𝑖 ∈ 𝑍 𝑎 ∈ 𝑖 ) ∧ ∃ 𝑗 ∈ 𝑍 𝑏 ∈ 𝑗 ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ ∪ 𝑍 ) |
79 |
78
|
anasss |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( ∃ 𝑖 ∈ 𝑍 𝑎 ∈ 𝑖 ∧ ∃ 𝑗 ∈ 𝑍 𝑏 ∈ 𝑗 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ ∪ 𝑍 ) |
80 |
37 79
|
sylan2b |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑎 ∈ ∪ 𝑍 ∧ 𝑏 ∈ ∪ 𝑍 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ ∪ 𝑍 ) |
81 |
80
|
ralrimivva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∀ 𝑎 ∈ ∪ 𝑍 ∀ 𝑏 ∈ ∪ 𝑍 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ ∪ 𝑍 ) |
82 |
81
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ ∪ 𝑍 ∀ 𝑏 ∈ ∪ 𝑍 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ ∪ 𝑍 ) |
83 |
17 1 50 43
|
islidl |
⊢ ( ∪ 𝑍 ∈ ( LIdeal ‘ 𝑅 ) ↔ ( ∪ 𝑍 ⊆ 𝐵 ∧ ∪ 𝑍 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ ∪ 𝑍 ∀ 𝑏 ∈ ∪ 𝑍 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ ∪ 𝑍 ) ) |
84 |
22 34 82 83
|
syl3anbrc |
⊢ ( 𝜑 → ∪ 𝑍 ∈ ( LIdeal ‘ 𝑅 ) ) |
85 |
|
iunss1 |
⊢ ( 𝑍 ⊆ 𝑃 → ∪ 𝑗 ∈ 𝑍 ( 𝑆 ∩ 𝑗 ) ⊆ ∪ 𝑗 ∈ 𝑃 ( 𝑆 ∩ 𝑗 ) ) |
86 |
7 85
|
syl |
⊢ ( 𝜑 → ∪ 𝑗 ∈ 𝑍 ( 𝑆 ∩ 𝑗 ) ⊆ ∪ 𝑗 ∈ 𝑃 ( 𝑆 ∩ 𝑗 ) ) |
87 |
|
uniin2 |
⊢ ∪ 𝑗 ∈ 𝑍 ( 𝑆 ∩ 𝑗 ) = ( 𝑆 ∩ ∪ 𝑍 ) |
88 |
87
|
a1i |
⊢ ( 𝜑 → ∪ 𝑗 ∈ 𝑍 ( 𝑆 ∩ 𝑗 ) = ( 𝑆 ∩ ∪ 𝑍 ) ) |
89 |
14
|
a1i |
⊢ ( 𝜑 → 𝑃 ⊆ ( LIdeal ‘ 𝑅 ) ) |
90 |
89
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑃 ) → 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) |
91 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑃 ) → 𝑗 ∈ 𝑃 ) |
92 |
91 6
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑃 ) → 𝑗 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆 ∩ 𝑝 ) = ∅ ∧ 𝐼 ⊆ 𝑝 ) } ) |
93 |
|
ineq2 |
⊢ ( 𝑝 = 𝑗 → ( 𝑆 ∩ 𝑝 ) = ( 𝑆 ∩ 𝑗 ) ) |
94 |
93
|
eqeq1d |
⊢ ( 𝑝 = 𝑗 → ( ( 𝑆 ∩ 𝑝 ) = ∅ ↔ ( 𝑆 ∩ 𝑗 ) = ∅ ) ) |
95 |
|
sseq2 |
⊢ ( 𝑝 = 𝑗 → ( 𝐼 ⊆ 𝑝 ↔ 𝐼 ⊆ 𝑗 ) ) |
96 |
94 95
|
anbi12d |
⊢ ( 𝑝 = 𝑗 → ( ( ( 𝑆 ∩ 𝑝 ) = ∅ ∧ 𝐼 ⊆ 𝑝 ) ↔ ( ( 𝑆 ∩ 𝑗 ) = ∅ ∧ 𝐼 ⊆ 𝑗 ) ) ) |
97 |
96
|
elrab3 |
⊢ ( 𝑗 ∈ ( LIdeal ‘ 𝑅 ) → ( 𝑗 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆 ∩ 𝑝 ) = ∅ ∧ 𝐼 ⊆ 𝑝 ) } ↔ ( ( 𝑆 ∩ 𝑗 ) = ∅ ∧ 𝐼 ⊆ 𝑗 ) ) ) |
98 |
97
|
simprbda |
⊢ ( ( 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑗 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆 ∩ 𝑝 ) = ∅ ∧ 𝐼 ⊆ 𝑝 ) } ) → ( 𝑆 ∩ 𝑗 ) = ∅ ) |
99 |
90 92 98
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑃 ) → ( 𝑆 ∩ 𝑗 ) = ∅ ) |
100 |
99
|
iuneq2dv |
⊢ ( 𝜑 → ∪ 𝑗 ∈ 𝑃 ( 𝑆 ∩ 𝑗 ) = ∪ 𝑗 ∈ 𝑃 ∅ ) |
101 |
|
iun0 |
⊢ ∪ 𝑗 ∈ 𝑃 ∅ = ∅ |
102 |
100 101
|
eqtrdi |
⊢ ( 𝜑 → ∪ 𝑗 ∈ 𝑃 ( 𝑆 ∩ 𝑗 ) = ∅ ) |
103 |
86 88 102
|
3sstr3d |
⊢ ( 𝜑 → ( 𝑆 ∩ ∪ 𝑍 ) ⊆ ∅ ) |
104 |
|
ss0 |
⊢ ( ( 𝑆 ∩ ∪ 𝑍 ) ⊆ ∅ → ( 𝑆 ∩ ∪ 𝑍 ) = ∅ ) |
105 |
103 104
|
syl |
⊢ ( 𝜑 → ( 𝑆 ∩ ∪ 𝑍 ) = ∅ ) |
106 |
7
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ 𝑃 ) |
107 |
96 6
|
elrab2 |
⊢ ( 𝑗 ∈ 𝑃 ↔ ( 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ∧ ( ( 𝑆 ∩ 𝑗 ) = ∅ ∧ 𝐼 ⊆ 𝑗 ) ) ) |
108 |
106 107
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ∧ ( ( 𝑆 ∩ 𝑗 ) = ∅ ∧ 𝐼 ⊆ 𝑗 ) ) ) |
109 |
108
|
simprrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝐼 ⊆ 𝑗 ) |
110 |
109
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑗 ∈ 𝑍 𝐼 ⊆ 𝑗 ) |
111 |
|
ssint |
⊢ ( 𝐼 ⊆ ∩ 𝑍 ↔ ∀ 𝑗 ∈ 𝑍 𝐼 ⊆ 𝑗 ) |
112 |
110 111
|
sylibr |
⊢ ( 𝜑 → 𝐼 ⊆ ∩ 𝑍 ) |
113 |
|
intssuni |
⊢ ( 𝑍 ≠ ∅ → ∩ 𝑍 ⊆ ∪ 𝑍 ) |
114 |
8 113
|
syl |
⊢ ( 𝜑 → ∩ 𝑍 ⊆ ∪ 𝑍 ) |
115 |
112 114
|
sstrd |
⊢ ( 𝜑 → 𝐼 ⊆ ∪ 𝑍 ) |
116 |
105 115
|
jca |
⊢ ( 𝜑 → ( ( 𝑆 ∩ ∪ 𝑍 ) = ∅ ∧ 𝐼 ⊆ ∪ 𝑍 ) ) |
117 |
13 84 116
|
elrabd |
⊢ ( 𝜑 → ∪ 𝑍 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆 ∩ 𝑝 ) = ∅ ∧ 𝐼 ⊆ 𝑝 ) } ) |
118 |
117 6
|
eleqtrrdi |
⊢ ( 𝜑 → ∪ 𝑍 ∈ 𝑃 ) |