Metamath Proof Explorer


Theorem ssdifidllem

Description: Lemma for ssdifidl : The set P used in the proof of ssdifidl satisfies the condition of Zorn's Lemma. (Contributed by Thierry Arnoux, 3-Jun-2025)

Ref Expression
Hypotheses ssdifidl.1 B = Base R
ssdifidl.2 φ R Ring
ssdifidl.3 φ I LIdeal R
ssdifidl.4 φ S B
ssdifidl.5 φ S I =
ssdifidl.6 P = p LIdeal R | S p = I p
ssdifidllem.7 φ Z P
ssdifidllem.8 φ Z
ssdifidllem.9 φ [⊂] Or Z
Assertion ssdifidllem φ Z P

Proof

Step Hyp Ref Expression
1 ssdifidl.1 B = Base R
2 ssdifidl.2 φ R Ring
3 ssdifidl.3 φ I LIdeal R
4 ssdifidl.4 φ S B
5 ssdifidl.5 φ S I =
6 ssdifidl.6 P = p LIdeal R | S p = I p
7 ssdifidllem.7 φ Z P
8 ssdifidllem.8 φ Z
9 ssdifidllem.9 φ [⊂] Or Z
10 ineq2 p = Z S p = S Z
11 10 eqeq1d p = Z S p = S Z =
12 sseq2 p = Z I p I Z
13 11 12 anbi12d p = Z S p = I p S Z = I Z
14 6 ssrab3 P LIdeal R
15 7 14 sstrdi φ Z LIdeal R
16 15 sselda φ j Z j LIdeal R
17 eqid LIdeal R = LIdeal R
18 1 17 lidlss j LIdeal R j B
19 16 18 syl φ j Z j B
20 19 ralrimiva φ j Z j B
21 unissb Z B j Z j B
22 20 21 sylibr φ Z B
23 eqid 0 R = 0 R
24 17 23 lidl0cl R Ring j LIdeal R 0 R j
25 2 16 24 syl2an2r φ j Z 0 R j
26 n0i 0 R j ¬ j =
27 25 26 syl φ j Z ¬ j =
28 27 reximdva0 φ Z j Z ¬ j =
29 8 28 mpdan φ j Z ¬ j =
30 rexnal j Z ¬ j = ¬ j Z j =
31 29 30 sylib φ ¬ j Z j =
32 uni0c Z = j Z j =
33 32 necon3abii Z ¬ j Z j =
34 31 33 sylibr φ Z
35 eluni2 a Z i Z a i
36 eluni2 b Z j Z b j
37 35 36 anbi12i a Z b Z i Z a i j Z b j
38 an32 φ x B i Z a i j Z φ x B j Z i Z a i
39 2 ad6antr φ x B j Z b j i Z a i i j R Ring
40 15 ad6antr φ x B j Z b j i Z a i i j Z LIdeal R
41 simp-5r φ x B j Z b j i Z a i i j j Z
42 40 41 sseldd φ x B j Z b j i Z a i i j j LIdeal R
43 eqid R = R
44 simp-6r φ x B j Z b j i Z a i i j x B
45 simpr φ x B j Z b j i Z a i i j i j
46 simplr φ x B j Z b j i Z a i i j a i
47 45 46 sseldd φ x B j Z b j i Z a i i j a j
48 17 1 43 39 42 44 47 lidlmcld φ x B j Z b j i Z a i i j x R a j
49 simp-4r φ x B j Z b j i Z a i i j b j
50 eqid + R = + R
51 17 50 lidlacl R Ring j LIdeal R x R a j b j x R a + R b j
52 39 42 48 49 51 syl22anc φ x B j Z b j i Z a i i j x R a + R b j
53 elunii x R a + R b j j Z x R a + R b Z
54 52 41 53 syl2anc φ x B j Z b j i Z a i i j x R a + R b Z
55 2 ad6antr φ x B j Z b j i Z a i j i R Ring
56 15 ad6antr φ x B j Z b j i Z a i j i Z LIdeal R
57 simpllr φ x B j Z b j i Z a i j i i Z
58 56 57 sseldd φ x B j Z b j i Z a i j i i LIdeal R
59 simp-6r φ x B j Z b j i Z a i j i x B
60 simplr φ x B j Z b j i Z a i j i a i
61 17 1 43 55 58 59 60 lidlmcld φ x B j Z b j i Z a i j i x R a i
62 simpr φ x B j Z b j i Z a i j i j i
63 simp-4r φ x B j Z b j i Z a i j i b j
64 62 63 sseldd φ x B j Z b j i Z a i j i b i
65 17 50 lidlacl R Ring i LIdeal R x R a i b i x R a + R b i
66 55 58 61 64 65 syl22anc φ x B j Z b j i Z a i j i x R a + R b i
67 elunii x R a + R b i i Z x R a + R b Z
68 66 57 67 syl2anc φ x B j Z b j i Z a i j i x R a + R b Z
69 9 ad5antr φ x B j Z b j i Z a i [⊂] Or Z
70 simplr φ x B j Z b j i Z a i i Z
71 simp-4r φ x B j Z b j i Z a i j Z
72 sorpssi [⊂] Or Z i Z j Z i j j i
73 69 70 71 72 syl12anc φ x B j Z b j i Z a i i j j i
74 54 68 73 mpjaodan φ x B j Z b j i Z a i x R a + R b Z
75 74 r19.29an φ x B j Z b j i Z a i x R a + R b Z
76 75 an32s φ x B j Z i Z a i b j x R a + R b Z
77 38 76 sylanb φ x B i Z a i j Z b j x R a + R b Z
78 77 r19.29an φ x B i Z a i j Z b j x R a + R b Z
79 78 anasss φ x B i Z a i j Z b j x R a + R b Z
80 37 79 sylan2b φ x B a Z b Z x R a + R b Z
81 80 ralrimivva φ x B a Z b Z x R a + R b Z
82 81 ralrimiva φ x B a Z b Z x R a + R b Z
83 17 1 50 43 islidl Z LIdeal R Z B Z x B a Z b Z x R a + R b Z
84 22 34 82 83 syl3anbrc φ Z LIdeal R
85 iunss1 Z P j Z S j j P S j
86 7 85 syl φ j Z S j j P S j
87 uniin2 j Z S j = S Z
88 87 a1i φ j Z S j = S Z
89 14 a1i φ P LIdeal R
90 89 sselda φ j P j LIdeal R
91 simpr φ j P j P
92 91 6 eleqtrdi φ j P j p LIdeal R | S p = I p
93 ineq2 p = j S p = S j
94 93 eqeq1d p = j S p = S j =
95 sseq2 p = j I p I j
96 94 95 anbi12d p = j S p = I p S j = I j
97 96 elrab3 j LIdeal R j p LIdeal R | S p = I p S j = I j
98 97 simprbda j LIdeal R j p LIdeal R | S p = I p S j =
99 90 92 98 syl2anc φ j P S j =
100 99 iuneq2dv φ j P S j = j P
101 iun0 j P =
102 100 101 eqtrdi φ j P S j =
103 86 88 102 3sstr3d φ S Z
104 ss0 S Z S Z =
105 103 104 syl φ S Z =
106 7 sselda φ j Z j P
107 96 6 elrab2 j P j LIdeal R S j = I j
108 106 107 sylib φ j Z j LIdeal R S j = I j
109 108 simprrd φ j Z I j
110 109 ralrimiva φ j Z I j
111 ssint I Z j Z I j
112 110 111 sylibr φ I Z
113 intssuni Z Z Z
114 8 113 syl φ Z Z
115 112 114 sstrd φ I Z
116 105 115 jca φ S Z = I Z
117 13 84 116 elrabd φ Z p LIdeal R | S p = I p
118 117 6 eleqtrrdi φ Z P