| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssdifidl.1 |
|
| 2 |
|
ssdifidl.2 |
|
| 3 |
|
ssdifidl.3 |
|
| 4 |
|
ssdifidl.4 |
|
| 5 |
|
ssdifidl.5 |
|
| 6 |
|
ssdifidl.6 |
|
| 7 |
|
ssdifidllem.7 |
|
| 8 |
|
ssdifidllem.8 |
|
| 9 |
|
ssdifidllem.9 |
|
| 10 |
|
ineq2 |
|
| 11 |
10
|
eqeq1d |
|
| 12 |
|
sseq2 |
|
| 13 |
11 12
|
anbi12d |
|
| 14 |
6
|
ssrab3 |
|
| 15 |
7 14
|
sstrdi |
|
| 16 |
15
|
sselda |
|
| 17 |
|
eqid |
|
| 18 |
1 17
|
lidlss |
|
| 19 |
16 18
|
syl |
|
| 20 |
19
|
ralrimiva |
|
| 21 |
|
unissb |
|
| 22 |
20 21
|
sylibr |
|
| 23 |
|
eqid |
|
| 24 |
17 23
|
lidl0cl |
|
| 25 |
2 16 24
|
syl2an2r |
|
| 26 |
|
n0i |
|
| 27 |
25 26
|
syl |
|
| 28 |
27
|
reximdva0 |
|
| 29 |
8 28
|
mpdan |
|
| 30 |
|
rexnal |
|
| 31 |
29 30
|
sylib |
|
| 32 |
|
uni0c |
|
| 33 |
32
|
necon3abii |
|
| 34 |
31 33
|
sylibr |
|
| 35 |
|
eluni2 |
|
| 36 |
|
eluni2 |
|
| 37 |
35 36
|
anbi12i |
|
| 38 |
|
an32 |
|
| 39 |
2
|
ad6antr |
|
| 40 |
15
|
ad6antr |
|
| 41 |
|
simp-5r |
|
| 42 |
40 41
|
sseldd |
|
| 43 |
|
eqid |
|
| 44 |
|
simp-6r |
|
| 45 |
|
simpr |
|
| 46 |
|
simplr |
|
| 47 |
45 46
|
sseldd |
|
| 48 |
17 1 43 39 42 44 47
|
lidlmcld |
|
| 49 |
|
simp-4r |
|
| 50 |
|
eqid |
|
| 51 |
17 50
|
lidlacl |
|
| 52 |
39 42 48 49 51
|
syl22anc |
|
| 53 |
|
elunii |
|
| 54 |
52 41 53
|
syl2anc |
|
| 55 |
2
|
ad6antr |
|
| 56 |
15
|
ad6antr |
|
| 57 |
|
simpllr |
|
| 58 |
56 57
|
sseldd |
|
| 59 |
|
simp-6r |
|
| 60 |
|
simplr |
|
| 61 |
17 1 43 55 58 59 60
|
lidlmcld |
|
| 62 |
|
simpr |
|
| 63 |
|
simp-4r |
|
| 64 |
62 63
|
sseldd |
|
| 65 |
17 50
|
lidlacl |
|
| 66 |
55 58 61 64 65
|
syl22anc |
|
| 67 |
|
elunii |
|
| 68 |
66 57 67
|
syl2anc |
|
| 69 |
9
|
ad5antr |
|
| 70 |
|
simplr |
|
| 71 |
|
simp-4r |
|
| 72 |
|
sorpssi |
|
| 73 |
69 70 71 72
|
syl12anc |
|
| 74 |
54 68 73
|
mpjaodan |
|
| 75 |
74
|
r19.29an |
|
| 76 |
75
|
an32s |
|
| 77 |
38 76
|
sylanb |
|
| 78 |
77
|
r19.29an |
|
| 79 |
78
|
anasss |
|
| 80 |
37 79
|
sylan2b |
|
| 81 |
80
|
ralrimivva |
|
| 82 |
81
|
ralrimiva |
|
| 83 |
17 1 50 43
|
islidl |
|
| 84 |
22 34 82 83
|
syl3anbrc |
|
| 85 |
|
iunss1 |
|
| 86 |
7 85
|
syl |
|
| 87 |
|
uniin2 |
|
| 88 |
87
|
a1i |
|
| 89 |
14
|
a1i |
|
| 90 |
89
|
sselda |
|
| 91 |
|
simpr |
|
| 92 |
91 6
|
eleqtrdi |
|
| 93 |
|
ineq2 |
|
| 94 |
93
|
eqeq1d |
|
| 95 |
|
sseq2 |
|
| 96 |
94 95
|
anbi12d |
|
| 97 |
96
|
elrab3 |
|
| 98 |
97
|
simprbda |
|
| 99 |
90 92 98
|
syl2anc |
|
| 100 |
99
|
iuneq2dv |
|
| 101 |
|
iun0 |
|
| 102 |
100 101
|
eqtrdi |
|
| 103 |
86 88 102
|
3sstr3d |
|
| 104 |
|
ss0 |
|
| 105 |
103 104
|
syl |
|
| 106 |
7
|
sselda |
|
| 107 |
96 6
|
elrab2 |
|
| 108 |
106 107
|
sylib |
|
| 109 |
108
|
simprrd |
|
| 110 |
109
|
ralrimiva |
|
| 111 |
|
ssint |
|
| 112 |
110 111
|
sylibr |
|
| 113 |
|
intssuni |
|
| 114 |
8 113
|
syl |
|
| 115 |
112 114
|
sstrd |
|
| 116 |
105 115
|
jca |
|
| 117 |
13 84 116
|
elrabd |
|
| 118 |
117 6
|
eleqtrrdi |
|