Step |
Hyp |
Ref |
Expression |
1 |
|
ssdifidl.1 |
|
2 |
|
ssdifidl.2 |
|
3 |
|
ssdifidl.3 |
|
4 |
|
ssdifidl.4 |
|
5 |
|
ssdifidl.5 |
|
6 |
|
ssdifidl.6 |
|
7 |
|
ssdifidllem.7 |
|
8 |
|
ssdifidllem.8 |
|
9 |
|
ssdifidllem.9 |
|
10 |
|
ineq2 |
|
11 |
10
|
eqeq1d |
|
12 |
|
sseq2 |
|
13 |
11 12
|
anbi12d |
|
14 |
6
|
ssrab3 |
|
15 |
7 14
|
sstrdi |
|
16 |
15
|
sselda |
|
17 |
|
eqid |
|
18 |
1 17
|
lidlss |
|
19 |
16 18
|
syl |
|
20 |
19
|
ralrimiva |
|
21 |
|
unissb |
|
22 |
20 21
|
sylibr |
|
23 |
|
eqid |
|
24 |
17 23
|
lidl0cl |
|
25 |
2 16 24
|
syl2an2r |
|
26 |
|
n0i |
|
27 |
25 26
|
syl |
|
28 |
27
|
reximdva0 |
|
29 |
8 28
|
mpdan |
|
30 |
|
rexnal |
|
31 |
29 30
|
sylib |
|
32 |
|
uni0c |
|
33 |
32
|
necon3abii |
|
34 |
31 33
|
sylibr |
|
35 |
|
eluni2 |
|
36 |
|
eluni2 |
|
37 |
35 36
|
anbi12i |
|
38 |
|
an32 |
|
39 |
2
|
ad6antr |
|
40 |
15
|
ad6antr |
|
41 |
|
simp-5r |
|
42 |
40 41
|
sseldd |
|
43 |
|
eqid |
|
44 |
|
simp-6r |
|
45 |
|
simpr |
|
46 |
|
simplr |
|
47 |
45 46
|
sseldd |
|
48 |
17 1 43 39 42 44 47
|
lidlmcld |
|
49 |
|
simp-4r |
|
50 |
|
eqid |
|
51 |
17 50
|
lidlacl |
|
52 |
39 42 48 49 51
|
syl22anc |
|
53 |
|
elunii |
|
54 |
52 41 53
|
syl2anc |
|
55 |
2
|
ad6antr |
|
56 |
15
|
ad6antr |
|
57 |
|
simpllr |
|
58 |
56 57
|
sseldd |
|
59 |
|
simp-6r |
|
60 |
|
simplr |
|
61 |
17 1 43 55 58 59 60
|
lidlmcld |
|
62 |
|
simpr |
|
63 |
|
simp-4r |
|
64 |
62 63
|
sseldd |
|
65 |
17 50
|
lidlacl |
|
66 |
55 58 61 64 65
|
syl22anc |
|
67 |
|
elunii |
|
68 |
66 57 67
|
syl2anc |
|
69 |
9
|
ad5antr |
|
70 |
|
simplr |
|
71 |
|
simp-4r |
|
72 |
|
sorpssi |
|
73 |
69 70 71 72
|
syl12anc |
|
74 |
54 68 73
|
mpjaodan |
|
75 |
74
|
r19.29an |
|
76 |
75
|
an32s |
|
77 |
38 76
|
sylanb |
|
78 |
77
|
r19.29an |
|
79 |
78
|
anasss |
|
80 |
37 79
|
sylan2b |
|
81 |
80
|
ralrimivva |
|
82 |
81
|
ralrimiva |
|
83 |
17 1 50 43
|
islidl |
|
84 |
22 34 82 83
|
syl3anbrc |
|
85 |
|
iunss1 |
|
86 |
7 85
|
syl |
|
87 |
|
uniin2 |
|
88 |
87
|
a1i |
|
89 |
14
|
a1i |
|
90 |
89
|
sselda |
|
91 |
|
simpr |
|
92 |
91 6
|
eleqtrdi |
|
93 |
|
ineq2 |
|
94 |
93
|
eqeq1d |
|
95 |
|
sseq2 |
|
96 |
94 95
|
anbi12d |
|
97 |
96
|
elrab3 |
|
98 |
97
|
simprbda |
|
99 |
90 92 98
|
syl2anc |
|
100 |
99
|
iuneq2dv |
|
101 |
|
iun0 |
|
102 |
100 101
|
eqtrdi |
|
103 |
86 88 102
|
3sstr3d |
|
104 |
|
ss0 |
|
105 |
103 104
|
syl |
|
106 |
7
|
sselda |
|
107 |
96 6
|
elrab2 |
|
108 |
106 107
|
sylib |
|
109 |
108
|
simprrd |
|
110 |
109
|
ralrimiva |
|
111 |
|
ssint |
|
112 |
110 111
|
sylibr |
|
113 |
|
intssuni |
|
114 |
8 113
|
syl |
|
115 |
112 114
|
sstrd |
|
116 |
105 115
|
jca |
|
117 |
13 84 116
|
elrabd |
|
118 |
117 6
|
eleqtrrdi |
|