Metamath Proof Explorer


Theorem ssdifidl

Description: Let R be a ring, and let I be an ideal of R disjoint with a set S . Then there exists an ideal i , maximal among the set P of ideals containing I and disjoint with S . (Contributed by Thierry Arnoux, 3-Jun-2025)

Ref Expression
Hypotheses ssdifidl.1 B = Base R
ssdifidl.2 φ R Ring
ssdifidl.3 φ I LIdeal R
ssdifidl.4 φ S B
ssdifidl.5 φ S I =
ssdifidl.6 P = p LIdeal R | S p = I p
Assertion ssdifidl φ i P j P ¬ i j

Proof

Step Hyp Ref Expression
1 ssdifidl.1 B = Base R
2 ssdifidl.2 φ R Ring
3 ssdifidl.3 φ I LIdeal R
4 ssdifidl.4 φ S B
5 ssdifidl.5 φ S I =
6 ssdifidl.6 P = p LIdeal R | S p = I p
7 ineq2 p = I S p = S I
8 7 eqeq1d p = I S p = S I =
9 sseq2 p = I I p I I
10 8 9 anbi12d p = I S p = I p S I = I I
11 ssidd φ I I
12 5 11 jca φ S I = I I
13 10 3 12 elrabd φ I p LIdeal R | S p = I p
14 13 6 eleqtrrdi φ I P
15 14 ne0d φ P
16 2 adantr φ z P z [⊂] Or z R Ring
17 3 adantr φ z P z [⊂] Or z I LIdeal R
18 4 adantr φ z P z [⊂] Or z S B
19 5 adantr φ z P z [⊂] Or z S I =
20 simpr1 φ z P z [⊂] Or z z P
21 simpr2 φ z P z [⊂] Or z z
22 simpr3 φ z P z [⊂] Or z [⊂] Or z
23 1 16 17 18 19 6 20 21 22 ssdifidllem φ z P z [⊂] Or z z P
24 23 ex φ z P z [⊂] Or z z P
25 24 alrimiv φ z z P z [⊂] Or z z P
26 fvex LIdeal R V
27 6 26 rabex2 P V
28 27 zornn0 P z z P z [⊂] Or z z P i P j P ¬ i j
29 15 25 28 syl2anc φ i P j P ¬ i j