| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssdifidl.1 |
|
| 2 |
|
ssdifidl.2 |
|
| 3 |
|
ssdifidl.3 |
|
| 4 |
|
ssdifidl.4 |
|
| 5 |
|
ssdifidl.5 |
|
| 6 |
|
ssdifidl.6 |
|
| 7 |
|
ineq2 |
|
| 8 |
7
|
eqeq1d |
|
| 9 |
|
sseq2 |
|
| 10 |
8 9
|
anbi12d |
|
| 11 |
|
ssidd |
|
| 12 |
5 11
|
jca |
|
| 13 |
10 3 12
|
elrabd |
|
| 14 |
13 6
|
eleqtrrdi |
|
| 15 |
14
|
ne0d |
|
| 16 |
2
|
adantr |
|
| 17 |
3
|
adantr |
|
| 18 |
4
|
adantr |
|
| 19 |
5
|
adantr |
|
| 20 |
|
simpr1 |
|
| 21 |
|
simpr2 |
|
| 22 |
|
simpr3 |
|
| 23 |
1 16 17 18 19 6 20 21 22
|
ssdifidllem |
|
| 24 |
23
|
ex |
|
| 25 |
24
|
alrimiv |
|
| 26 |
|
fvex |
|
| 27 |
6 26
|
rabex2 |
|
| 28 |
27
|
zornn0 |
|
| 29 |
15 25 28
|
syl2anc |
|