Metamath Proof Explorer


Theorem ssdifidl

Description: Let R be a ring, and let I be an ideal of R disjoint with a set S . Then there exists an ideal i , maximal among the set P of ideals containing I and disjoint with S . (Contributed by Thierry Arnoux, 3-Jun-2025)

Ref Expression
Hypotheses ssdifidl.1 𝐵 = ( Base ‘ 𝑅 )
ssdifidl.2 ( 𝜑𝑅 ∈ Ring )
ssdifidl.3 ( 𝜑𝐼 ∈ ( LIdeal ‘ 𝑅 ) )
ssdifidl.4 ( 𝜑𝑆𝐵 )
ssdifidl.5 ( 𝜑 → ( 𝑆𝐼 ) = ∅ )
ssdifidl.6 𝑃 = { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆𝑝 ) = ∅ ∧ 𝐼𝑝 ) }
Assertion ssdifidl ( 𝜑 → ∃ 𝑖𝑃𝑗𝑃 ¬ 𝑖𝑗 )

Proof

Step Hyp Ref Expression
1 ssdifidl.1 𝐵 = ( Base ‘ 𝑅 )
2 ssdifidl.2 ( 𝜑𝑅 ∈ Ring )
3 ssdifidl.3 ( 𝜑𝐼 ∈ ( LIdeal ‘ 𝑅 ) )
4 ssdifidl.4 ( 𝜑𝑆𝐵 )
5 ssdifidl.5 ( 𝜑 → ( 𝑆𝐼 ) = ∅ )
6 ssdifidl.6 𝑃 = { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆𝑝 ) = ∅ ∧ 𝐼𝑝 ) }
7 ineq2 ( 𝑝 = 𝐼 → ( 𝑆𝑝 ) = ( 𝑆𝐼 ) )
8 7 eqeq1d ( 𝑝 = 𝐼 → ( ( 𝑆𝑝 ) = ∅ ↔ ( 𝑆𝐼 ) = ∅ ) )
9 sseq2 ( 𝑝 = 𝐼 → ( 𝐼𝑝𝐼𝐼 ) )
10 8 9 anbi12d ( 𝑝 = 𝐼 → ( ( ( 𝑆𝑝 ) = ∅ ∧ 𝐼𝑝 ) ↔ ( ( 𝑆𝐼 ) = ∅ ∧ 𝐼𝐼 ) ) )
11 ssidd ( 𝜑𝐼𝐼 )
12 5 11 jca ( 𝜑 → ( ( 𝑆𝐼 ) = ∅ ∧ 𝐼𝐼 ) )
13 10 3 12 elrabd ( 𝜑𝐼 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆𝑝 ) = ∅ ∧ 𝐼𝑝 ) } )
14 13 6 eleqtrrdi ( 𝜑𝐼𝑃 )
15 14 ne0d ( 𝜑𝑃 ≠ ∅ )
16 2 adantr ( ( 𝜑 ∧ ( 𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧 ) ) → 𝑅 ∈ Ring )
17 3 adantr ( ( 𝜑 ∧ ( 𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧 ) ) → 𝐼 ∈ ( LIdeal ‘ 𝑅 ) )
18 4 adantr ( ( 𝜑 ∧ ( 𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧 ) ) → 𝑆𝐵 )
19 5 adantr ( ( 𝜑 ∧ ( 𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧 ) ) → ( 𝑆𝐼 ) = ∅ )
20 simpr1 ( ( 𝜑 ∧ ( 𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧 ) ) → 𝑧𝑃 )
21 simpr2 ( ( 𝜑 ∧ ( 𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧 ) ) → 𝑧 ≠ ∅ )
22 simpr3 ( ( 𝜑 ∧ ( 𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧 ) ) → [] Or 𝑧 )
23 1 16 17 18 19 6 20 21 22 ssdifidllem ( ( 𝜑 ∧ ( 𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧 ) ) → 𝑧𝑃 )
24 23 ex ( 𝜑 → ( ( 𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧 ) → 𝑧𝑃 ) )
25 24 alrimiv ( 𝜑 → ∀ 𝑧 ( ( 𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧 ) → 𝑧𝑃 ) )
26 fvex ( LIdeal ‘ 𝑅 ) ∈ V
27 6 26 rabex2 𝑃 ∈ V
28 27 zornn0 ( ( 𝑃 ≠ ∅ ∧ ∀ 𝑧 ( ( 𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧 ) → 𝑧𝑃 ) ) → ∃ 𝑖𝑃𝑗𝑃 ¬ 𝑖𝑗 )
29 15 25 28 syl2anc ( 𝜑 → ∃ 𝑖𝑃𝑗𝑃 ¬ 𝑖𝑗 )