Step |
Hyp |
Ref |
Expression |
1 |
|
ssdifidl.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
ssdifidl.2 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
3 |
|
ssdifidl.3 |
⊢ ( 𝜑 → 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) |
4 |
|
ssdifidl.4 |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
5 |
|
ssdifidl.5 |
⊢ ( 𝜑 → ( 𝑆 ∩ 𝐼 ) = ∅ ) |
6 |
|
ssdifidl.6 |
⊢ 𝑃 = { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆 ∩ 𝑝 ) = ∅ ∧ 𝐼 ⊆ 𝑝 ) } |
7 |
|
ineq2 |
⊢ ( 𝑝 = 𝐼 → ( 𝑆 ∩ 𝑝 ) = ( 𝑆 ∩ 𝐼 ) ) |
8 |
7
|
eqeq1d |
⊢ ( 𝑝 = 𝐼 → ( ( 𝑆 ∩ 𝑝 ) = ∅ ↔ ( 𝑆 ∩ 𝐼 ) = ∅ ) ) |
9 |
|
sseq2 |
⊢ ( 𝑝 = 𝐼 → ( 𝐼 ⊆ 𝑝 ↔ 𝐼 ⊆ 𝐼 ) ) |
10 |
8 9
|
anbi12d |
⊢ ( 𝑝 = 𝐼 → ( ( ( 𝑆 ∩ 𝑝 ) = ∅ ∧ 𝐼 ⊆ 𝑝 ) ↔ ( ( 𝑆 ∩ 𝐼 ) = ∅ ∧ 𝐼 ⊆ 𝐼 ) ) ) |
11 |
|
ssidd |
⊢ ( 𝜑 → 𝐼 ⊆ 𝐼 ) |
12 |
5 11
|
jca |
⊢ ( 𝜑 → ( ( 𝑆 ∩ 𝐼 ) = ∅ ∧ 𝐼 ⊆ 𝐼 ) ) |
13 |
10 3 12
|
elrabd |
⊢ ( 𝜑 → 𝐼 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆 ∩ 𝑝 ) = ∅ ∧ 𝐼 ⊆ 𝑝 ) } ) |
14 |
13 6
|
eleqtrrdi |
⊢ ( 𝜑 → 𝐼 ∈ 𝑃 ) |
15 |
14
|
ne0d |
⊢ ( 𝜑 → 𝑃 ≠ ∅ ) |
16 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧 ) ) → 𝑅 ∈ Ring ) |
17 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧 ) ) → 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) |
18 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧 ) ) → 𝑆 ⊆ 𝐵 ) |
19 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧 ) ) → ( 𝑆 ∩ 𝐼 ) = ∅ ) |
20 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧 ) ) → 𝑧 ⊆ 𝑃 ) |
21 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧 ) ) → 𝑧 ≠ ∅ ) |
22 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧 ) ) → [⊊] Or 𝑧 ) |
23 |
1 16 17 18 19 6 20 21 22
|
ssdifidllem |
⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧 ) ) → ∪ 𝑧 ∈ 𝑃 ) |
24 |
23
|
ex |
⊢ ( 𝜑 → ( ( 𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧 ) → ∪ 𝑧 ∈ 𝑃 ) ) |
25 |
24
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑧 ( ( 𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧 ) → ∪ 𝑧 ∈ 𝑃 ) ) |
26 |
|
fvex |
⊢ ( LIdeal ‘ 𝑅 ) ∈ V |
27 |
6 26
|
rabex2 |
⊢ 𝑃 ∈ V |
28 |
27
|
zornn0 |
⊢ ( ( 𝑃 ≠ ∅ ∧ ∀ 𝑧 ( ( 𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧 ) → ∪ 𝑧 ∈ 𝑃 ) ) → ∃ 𝑖 ∈ 𝑃 ∀ 𝑗 ∈ 𝑃 ¬ 𝑖 ⊊ 𝑗 ) |
29 |
15 25 28
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑖 ∈ 𝑃 ∀ 𝑗 ∈ 𝑃 ¬ 𝑖 ⊊ 𝑗 ) |