Step |
Hyp |
Ref |
Expression |
1 |
|
ssdifidl.1 |
|- B = ( Base ` R ) |
2 |
|
ssdifidl.2 |
|- ( ph -> R e. Ring ) |
3 |
|
ssdifidl.3 |
|- ( ph -> I e. ( LIdeal ` R ) ) |
4 |
|
ssdifidl.4 |
|- ( ph -> S C_ B ) |
5 |
|
ssdifidl.5 |
|- ( ph -> ( S i^i I ) = (/) ) |
6 |
|
ssdifidl.6 |
|- P = { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ I C_ p ) } |
7 |
|
ineq2 |
|- ( p = I -> ( S i^i p ) = ( S i^i I ) ) |
8 |
7
|
eqeq1d |
|- ( p = I -> ( ( S i^i p ) = (/) <-> ( S i^i I ) = (/) ) ) |
9 |
|
sseq2 |
|- ( p = I -> ( I C_ p <-> I C_ I ) ) |
10 |
8 9
|
anbi12d |
|- ( p = I -> ( ( ( S i^i p ) = (/) /\ I C_ p ) <-> ( ( S i^i I ) = (/) /\ I C_ I ) ) ) |
11 |
|
ssidd |
|- ( ph -> I C_ I ) |
12 |
5 11
|
jca |
|- ( ph -> ( ( S i^i I ) = (/) /\ I C_ I ) ) |
13 |
10 3 12
|
elrabd |
|- ( ph -> I e. { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ I C_ p ) } ) |
14 |
13 6
|
eleqtrrdi |
|- ( ph -> I e. P ) |
15 |
14
|
ne0d |
|- ( ph -> P =/= (/) ) |
16 |
2
|
adantr |
|- ( ( ph /\ ( z C_ P /\ z =/= (/) /\ [C.] Or z ) ) -> R e. Ring ) |
17 |
3
|
adantr |
|- ( ( ph /\ ( z C_ P /\ z =/= (/) /\ [C.] Or z ) ) -> I e. ( LIdeal ` R ) ) |
18 |
4
|
adantr |
|- ( ( ph /\ ( z C_ P /\ z =/= (/) /\ [C.] Or z ) ) -> S C_ B ) |
19 |
5
|
adantr |
|- ( ( ph /\ ( z C_ P /\ z =/= (/) /\ [C.] Or z ) ) -> ( S i^i I ) = (/) ) |
20 |
|
simpr1 |
|- ( ( ph /\ ( z C_ P /\ z =/= (/) /\ [C.] Or z ) ) -> z C_ P ) |
21 |
|
simpr2 |
|- ( ( ph /\ ( z C_ P /\ z =/= (/) /\ [C.] Or z ) ) -> z =/= (/) ) |
22 |
|
simpr3 |
|- ( ( ph /\ ( z C_ P /\ z =/= (/) /\ [C.] Or z ) ) -> [C.] Or z ) |
23 |
1 16 17 18 19 6 20 21 22
|
ssdifidllem |
|- ( ( ph /\ ( z C_ P /\ z =/= (/) /\ [C.] Or z ) ) -> U. z e. P ) |
24 |
23
|
ex |
|- ( ph -> ( ( z C_ P /\ z =/= (/) /\ [C.] Or z ) -> U. z e. P ) ) |
25 |
24
|
alrimiv |
|- ( ph -> A. z ( ( z C_ P /\ z =/= (/) /\ [C.] Or z ) -> U. z e. P ) ) |
26 |
|
fvex |
|- ( LIdeal ` R ) e. _V |
27 |
6 26
|
rabex2 |
|- P e. _V |
28 |
27
|
zornn0 |
|- ( ( P =/= (/) /\ A. z ( ( z C_ P /\ z =/= (/) /\ [C.] Or z ) -> U. z e. P ) ) -> E. i e. P A. j e. P -. i C. j ) |
29 |
15 25 28
|
syl2anc |
|- ( ph -> E. i e. P A. j e. P -. i C. j ) |