Step |
Hyp |
Ref |
Expression |
1 |
|
ssdifidlprm.1 |
|
2 |
|
ssdifidlprm.2 |
|
3 |
|
ssdifidlprm.3 |
|
4 |
|
ssdifidlprm.4 |
|
5 |
|
ssdifidlprm.5 |
|
6 |
|
ssdifidlprm.6 |
|
7 |
|
ssdifidlprm.7 |
|
8 |
2
|
ad2antrr |
|
9 |
7
|
ssrab3 |
|
10 |
|
simpr |
|
11 |
9 10
|
sselid |
|
12 |
11
|
adantr |
|
13 |
2
|
crngringd |
|
14 |
|
eqid |
|
15 |
1 14
|
ringidcl |
|
16 |
13 15
|
syl |
|
17 |
16
|
ad2antrr |
|
18 |
|
eqid |
|
19 |
1 18
|
lidlss |
|
20 |
11 19
|
syl |
|
21 |
20
|
adantr |
|
22 |
|
incom |
|
23 |
22
|
eqeq1i |
|
24 |
|
ineq1 |
|
25 |
24
|
eqeq1d |
|
26 |
23 25
|
bitrid |
|
27 |
|
sseq2 |
|
28 |
26 27
|
anbi12d |
|
29 |
28 7
|
elrab2 |
|
30 |
29
|
biimpi |
|
31 |
30
|
simprd |
|
32 |
31
|
simpld |
|
33 |
32
|
ad2antlr |
|
34 |
|
reldisj |
|
35 |
34
|
biimpa |
|
36 |
21 33 35
|
syl2anc |
|
37 |
5 14
|
ringidval |
|
38 |
37
|
subm0cl |
|
39 |
4 38
|
syl |
|
40 |
39
|
ad2antrr |
|
41 |
|
elndif |
|
42 |
40 41
|
syl |
|
43 |
36 42
|
ssneldd |
|
44 |
|
nelne1 |
|
45 |
17 43 44
|
syl2anc |
|
46 |
45
|
necomd |
|
47 |
33
|
ad4antr |
|
48 |
|
ioran |
|
49 |
18
|
lidlsubg |
|
50 |
13 11 49
|
syl2an2r |
|
51 |
50
|
ad6antr |
|
52 |
13
|
ad7antr |
|
53 |
|
simp-5r |
|
54 |
53
|
snssd |
|
55 |
|
eqid |
|
56 |
55 1 18
|
rspcl |
|
57 |
52 54 56
|
syl2anc |
|
58 |
18
|
lidlsubg |
|
59 |
52 57 58
|
syl2anc |
|
60 |
|
eqid |
|
61 |
60
|
lsmub1 |
|
62 |
51 59 61
|
syl2anc |
|
63 |
60
|
lsmub2 |
|
64 |
51 59 63
|
syl2anc |
|
65 |
1 55
|
rspsnid |
|
66 |
52 53 65
|
syl2anc |
|
67 |
64 66
|
sseldd |
|
68 |
|
simplr |
|
69 |
62 67 68
|
ssnelpssd |
|
70 |
12
|
ad5antr |
|
71 |
1 60 55 52 70 57
|
lsmidl |
|
72 |
31
|
simprd |
|
73 |
72
|
adantl |
|
74 |
73
|
ad6antr |
|
75 |
74 62
|
sstrd |
|
76 |
71 75
|
jca |
|
77 |
|
simp-6r |
|
78 |
|
df-ral |
|
79 |
|
con2b |
|
80 |
79
|
albii |
|
81 |
78 80
|
bitri |
|
82 |
77 81
|
sylib |
|
83 |
|
ineq2 |
|
84 |
83
|
eqeq1d |
|
85 |
|
sseq2 |
|
86 |
84 85
|
anbi12d |
|
87 |
86 7
|
elrab2 |
|
88 |
87
|
baib |
|
89 |
88
|
rbaibd |
|
90 |
89
|
notbid |
|
91 |
90
|
biimpcd |
|
92 |
91
|
imim2i |
|
93 |
92
|
impd |
|
94 |
93
|
alimi |
|
95 |
|
ovex |
|
96 |
|
psseq2 |
|
97 |
|
eleq1 |
|
98 |
|
sseq2 |
|
99 |
97 98
|
anbi12d |
|
100 |
96 99
|
anbi12d |
|
101 |
|
ineq2 |
|
102 |
101
|
eqeq1d |
|
103 |
102
|
notbid |
|
104 |
100 103
|
imbi12d |
|
105 |
95 104
|
spcv |
|
106 |
82 94 105
|
3syl |
|
107 |
69 76 106
|
mp2and |
|
108 |
|
neq0 |
|
109 |
107 108
|
sylib |
|
110 |
|
simp-4r |
|
111 |
110
|
snssd |
|
112 |
55 1 18
|
rspcl |
|
113 |
52 111 112
|
syl2anc |
|
114 |
18
|
lidlsubg |
|
115 |
52 113 114
|
syl2anc |
|
116 |
60
|
lsmub1 |
|
117 |
51 115 116
|
syl2anc |
|
118 |
60
|
lsmub2 |
|
119 |
51 115 118
|
syl2anc |
|
120 |
1 55
|
rspsnid |
|
121 |
52 110 120
|
syl2anc |
|
122 |
119 121
|
sseldd |
|
123 |
|
simpr |
|
124 |
117 122 123
|
ssnelpssd |
|
125 |
1 60 55 52 70 113
|
lsmidl |
|
126 |
74 117
|
sstrd |
|
127 |
125 126
|
jca |
|
128 |
|
ovex |
|
129 |
|
psseq2 |
|
130 |
|
eleq1 |
|
131 |
|
sseq2 |
|
132 |
130 131
|
anbi12d |
|
133 |
129 132
|
anbi12d |
|
134 |
|
ineq2 |
|
135 |
134
|
eqeq1d |
|
136 |
135
|
notbid |
|
137 |
133 136
|
imbi12d |
|
138 |
128 137
|
spcv |
|
139 |
82 94 138
|
3syl |
|
140 |
124 127 139
|
mp2and |
|
141 |
|
neq0 |
|
142 |
140 141
|
sylib |
|
143 |
142
|
adantr |
|
144 |
52
|
ad2antrr |
|
145 |
144
|
ad2antrr |
|
146 |
53
|
ad2antrr |
|
147 |
146
|
ad2antrr |
|
148 |
|
eqid |
|
149 |
1 148 55
|
elrspsn |
|
150 |
145 147 149
|
syl2anc |
|
151 |
144
|
ad6antr |
|
152 |
110
|
ad2antrr |
|
153 |
152
|
ad6antr |
|
154 |
1 148 55
|
elrspsn |
|
155 |
151 153 154
|
syl2anc |
|
156 |
|
simp-7r |
|
157 |
|
simpllr |
|
158 |
156 157
|
oveq12d |
|
159 |
|
simp-5r |
|
160 |
159
|
oveq2d |
|
161 |
|
simpr |
|
162 |
161
|
oveq2d |
|
163 |
160 162
|
oveq12d |
|
164 |
|
eqid |
|
165 |
151
|
ad2antrr |
|
166 |
21
|
ad7antr |
|
167 |
166
|
ad4antr |
|
168 |
167
|
ad4antr |
|
169 |
|
simp-8r |
|
170 |
168 169
|
sseldd |
|
171 |
|
simp-6r |
|
172 |
146
|
ad8antr |
|
173 |
1 148 165 171 172
|
ringcld |
|
174 |
|
simp-4r |
|
175 |
168 174
|
sseldd |
|
176 |
|
simplr |
|
177 |
153
|
ad2antrr |
|
178 |
1 148 165 176 177
|
ringcld |
|
179 |
1 164 148 165 170 173 175 178
|
ringdi22 |
|
180 |
158 163 179
|
3eqtrd |
|
181 |
70
|
ad2antrr |
|
182 |
181
|
ad8antr |
|
183 |
165 182 49
|
syl2anc |
|
184 |
18 1 148 165 182 170 174
|
lidlmcld |
|
185 |
18 1 148 165 182 173 174
|
lidlmcld |
|
186 |
164 183 184 185
|
subgcld |
|
187 |
8
|
ad7antr |
|
188 |
187
|
ad4antr |
|
189 |
188
|
ad4antr |
|
190 |
1 148 189 170 178
|
crngcomd |
|
191 |
18 1 148 165 182 178 169
|
lidlmcld |
|
192 |
190 191
|
eqeltrd |
|
193 |
1 148
|
cringm4 |
|
194 |
189 171 172 176 177 193
|
syl122anc |
|
195 |
1 148 165 171 176
|
ringcld |
|
196 |
|
simp-5r |
|
197 |
196
|
ad8antr |
|
198 |
18 1 148 165 182 195 197
|
lidlmcld |
|
199 |
194 198
|
eqeltrd |
|
200 |
164 183 192 199
|
subgcld |
|
201 |
164 183 186 200
|
subgcld |
|
202 |
180 201
|
eqeltrd |
|
203 |
202
|
r19.29an |
|
204 |
155 203
|
sylbida |
|
205 |
204
|
an32s |
|
206 |
205
|
r19.29an |
|
207 |
113
|
ad2antrr |
|
208 |
1 18
|
lidlss |
|
209 |
207 208
|
syl |
|
210 |
209
|
ad4antr |
|
211 |
|
simpr |
|
212 |
211
|
elin2d |
|
213 |
212
|
ad4antr |
|
214 |
1 164 60
|
lsmelvalx |
|
215 |
214
|
biimpa |
|
216 |
188 167 210 213 215
|
syl31anc |
|
217 |
206 216
|
r19.29a |
|
218 |
217
|
r19.29an |
|
219 |
150 218
|
sylbida |
|
220 |
219
|
an32s |
|
221 |
220
|
r19.29an |
|
222 |
57
|
ad2antrr |
|
223 |
1 18
|
lidlss |
|
224 |
222 223
|
syl |
|
225 |
|
simplr |
|
226 |
225
|
elin2d |
|
227 |
1 164 60
|
lsmelvalx |
|
228 |
227
|
biimpa |
|
229 |
187 166 224 226 228
|
syl31anc |
|
230 |
221 229
|
r19.29a |
|
231 |
5 148
|
mgpplusg |
|
232 |
4
|
ad9antr |
|
233 |
225
|
elin1d |
|
234 |
211
|
elin1d |
|
235 |
231 232 233 234
|
submcld |
|
236 |
230 235
|
elind |
|
237 |
236
|
ne0d |
|
238 |
143 237
|
exlimddv |
|
239 |
109 238
|
exlimddv |
|
240 |
239
|
anasss |
|
241 |
48 240
|
sylan2b |
|
242 |
241
|
neneqd |
|
243 |
47 242
|
condan |
|
244 |
243
|
ex |
|
245 |
244
|
anasss |
|
246 |
245
|
ralrimivva |
|
247 |
1 148
|
isprmidlc |
|
248 |
247
|
biimpar |
|
249 |
8 12 46 246 248
|
syl13anc |
|
250 |
249
|
anasss |
|
251 |
|
simprr |
|
252 |
250 251
|
jca |
|
253 |
5 1
|
mgpbas |
|
254 |
253
|
submss |
|
255 |
4 254
|
syl |
|
256 |
1 13 3 255 6 7
|
ssdifidl |
|
257 |
252 256
|
reximddv |
|