Metamath Proof Explorer


Theorem ssdifidlprm

Description: If the set S of ssdifidl is multiplicatively closed, then the ideal i is prime. (Contributed by Thierry Arnoux, 3-Jun-2025)

Ref Expression
Hypotheses ssdifidlprm.1 B = Base R
ssdifidlprm.2 φ R CRing
ssdifidlprm.3 φ I LIdeal R
ssdifidlprm.4 φ S SubMnd M
ssdifidlprm.5 M = mulGrp R
ssdifidlprm.6 φ S I =
ssdifidlprm.7 P = p LIdeal R | S p = I p
Assertion ssdifidlprm φ i P i PrmIdeal R j P ¬ i j

Proof

Step Hyp Ref Expression
1 ssdifidlprm.1 B = Base R
2 ssdifidlprm.2 φ R CRing
3 ssdifidlprm.3 φ I LIdeal R
4 ssdifidlprm.4 φ S SubMnd M
5 ssdifidlprm.5 M = mulGrp R
6 ssdifidlprm.6 φ S I =
7 ssdifidlprm.7 P = p LIdeal R | S p = I p
8 2 ad2antrr φ i P j P ¬ i j R CRing
9 7 ssrab3 P LIdeal R
10 simpr φ i P i P
11 9 10 sselid φ i P i LIdeal R
12 11 adantr φ i P j P ¬ i j i LIdeal R
13 2 crngringd φ R Ring
14 eqid 1 R = 1 R
15 1 14 ringidcl R Ring 1 R B
16 13 15 syl φ 1 R B
17 16 ad2antrr φ i P j P ¬ i j 1 R B
18 eqid LIdeal R = LIdeal R
19 1 18 lidlss i LIdeal R i B
20 11 19 syl φ i P i B
21 20 adantr φ i P j P ¬ i j i B
22 incom S p = p S
23 22 eqeq1i S p = p S =
24 ineq1 p = i p S = i S
25 24 eqeq1d p = i p S = i S =
26 23 25 bitrid p = i S p = i S =
27 sseq2 p = i I p I i
28 26 27 anbi12d p = i S p = I p i S = I i
29 28 7 elrab2 i P i LIdeal R i S = I i
30 29 biimpi i P i LIdeal R i S = I i
31 30 simprd i P i S = I i
32 31 simpld i P i S =
33 32 ad2antlr φ i P j P ¬ i j i S =
34 reldisj i B i S = i B S
35 34 biimpa i B i S = i B S
36 21 33 35 syl2anc φ i P j P ¬ i j i B S
37 5 14 ringidval 1 R = 0 M
38 37 subm0cl S SubMnd M 1 R S
39 4 38 syl φ 1 R S
40 39 ad2antrr φ i P j P ¬ i j 1 R S
41 elndif 1 R S ¬ 1 R B S
42 40 41 syl φ i P j P ¬ i j ¬ 1 R B S
43 36 42 ssneldd φ i P j P ¬ i j ¬ 1 R i
44 nelne1 1 R B ¬ 1 R i B i
45 17 43 44 syl2anc φ i P j P ¬ i j B i
46 45 necomd φ i P j P ¬ i j i B
47 33 ad4antr φ i P j P ¬ i j a B b B a R b i ¬ a i b i i S =
48 ioran ¬ a i b i ¬ a i ¬ b i
49 18 lidlsubg R Ring i LIdeal R i SubGrp R
50 13 11 49 syl2an2r φ i P i SubGrp R
51 50 ad6antr φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i i SubGrp R
52 13 ad7antr φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i R Ring
53 simp-5r φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i a B
54 53 snssd φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i a B
55 eqid RSpan R = RSpan R
56 55 1 18 rspcl R Ring a B RSpan R a LIdeal R
57 52 54 56 syl2anc φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i RSpan R a LIdeal R
58 18 lidlsubg R Ring RSpan R a LIdeal R RSpan R a SubGrp R
59 52 57 58 syl2anc φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i RSpan R a SubGrp R
60 eqid LSSum R = LSSum R
61 60 lsmub1 i SubGrp R RSpan R a SubGrp R i i LSSum R RSpan R a
62 51 59 61 syl2anc φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i i i LSSum R RSpan R a
63 60 lsmub2 i SubGrp R RSpan R a SubGrp R RSpan R a i LSSum R RSpan R a
64 51 59 63 syl2anc φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i RSpan R a i LSSum R RSpan R a
65 1 55 rspsnid R Ring a B a RSpan R a
66 52 53 65 syl2anc φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i a RSpan R a
67 64 66 sseldd φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i a i LSSum R RSpan R a
68 simplr φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i ¬ a i
69 62 67 68 ssnelpssd φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i i i LSSum R RSpan R a
70 12 ad5antr φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i i LIdeal R
71 1 60 55 52 70 57 lsmidl φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i i LSSum R RSpan R a LIdeal R
72 31 simprd i P I i
73 72 adantl φ i P I i
74 73 ad6antr φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i I i
75 74 62 sstrd φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i I i LSSum R RSpan R a
76 71 75 jca φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i i LSSum R RSpan R a LIdeal R I i LSSum R RSpan R a
77 simp-6r φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i j P ¬ i j
78 df-ral j P ¬ i j j j P ¬ i j
79 con2b j P ¬ i j i j ¬ j P
80 79 albii j j P ¬ i j j i j ¬ j P
81 78 80 bitri j P ¬ i j j i j ¬ j P
82 77 81 sylib φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i j i j ¬ j P
83 ineq2 p = j S p = S j
84 83 eqeq1d p = j S p = S j =
85 sseq2 p = j I p I j
86 84 85 anbi12d p = j S p = I p S j = I j
87 86 7 elrab2 j P j LIdeal R S j = I j
88 87 baib j LIdeal R j P S j = I j
89 88 rbaibd j LIdeal R I j j P S j =
90 89 notbid j LIdeal R I j ¬ j P ¬ S j =
91 90 biimpcd ¬ j P j LIdeal R I j ¬ S j =
92 91 imim2i i j ¬ j P i j j LIdeal R I j ¬ S j =
93 92 impd i j ¬ j P i j j LIdeal R I j ¬ S j =
94 93 alimi j i j ¬ j P j i j j LIdeal R I j ¬ S j =
95 ovex i LSSum R RSpan R a V
96 psseq2 j = i LSSum R RSpan R a i j i i LSSum R RSpan R a
97 eleq1 j = i LSSum R RSpan R a j LIdeal R i LSSum R RSpan R a LIdeal R
98 sseq2 j = i LSSum R RSpan R a I j I i LSSum R RSpan R a
99 97 98 anbi12d j = i LSSum R RSpan R a j LIdeal R I j i LSSum R RSpan R a LIdeal R I i LSSum R RSpan R a
100 96 99 anbi12d j = i LSSum R RSpan R a i j j LIdeal R I j i i LSSum R RSpan R a i LSSum R RSpan R a LIdeal R I i LSSum R RSpan R a
101 ineq2 j = i LSSum R RSpan R a S j = S i LSSum R RSpan R a
102 101 eqeq1d j = i LSSum R RSpan R a S j = S i LSSum R RSpan R a =
103 102 notbid j = i LSSum R RSpan R a ¬ S j = ¬ S i LSSum R RSpan R a =
104 100 103 imbi12d j = i LSSum R RSpan R a i j j LIdeal R I j ¬ S j = i i LSSum R RSpan R a i LSSum R RSpan R a LIdeal R I i LSSum R RSpan R a ¬ S i LSSum R RSpan R a =
105 95 104 spcv j i j j LIdeal R I j ¬ S j = i i LSSum R RSpan R a i LSSum R RSpan R a LIdeal R I i LSSum R RSpan R a ¬ S i LSSum R RSpan R a =
106 82 94 105 3syl φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i i i LSSum R RSpan R a i LSSum R RSpan R a LIdeal R I i LSSum R RSpan R a ¬ S i LSSum R RSpan R a =
107 69 76 106 mp2and φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i ¬ S i LSSum R RSpan R a =
108 neq0 ¬ S i LSSum R RSpan R a = e e S i LSSum R RSpan R a
109 107 108 sylib φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e e S i LSSum R RSpan R a
110 simp-4r φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i b B
111 110 snssd φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i b B
112 55 1 18 rspcl R Ring b B RSpan R b LIdeal R
113 52 111 112 syl2anc φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i RSpan R b LIdeal R
114 18 lidlsubg R Ring RSpan R b LIdeal R RSpan R b SubGrp R
115 52 113 114 syl2anc φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i RSpan R b SubGrp R
116 60 lsmub1 i SubGrp R RSpan R b SubGrp R i i LSSum R RSpan R b
117 51 115 116 syl2anc φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i i i LSSum R RSpan R b
118 60 lsmub2 i SubGrp R RSpan R b SubGrp R RSpan R b i LSSum R RSpan R b
119 51 115 118 syl2anc φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i RSpan R b i LSSum R RSpan R b
120 1 55 rspsnid R Ring b B b RSpan R b
121 52 110 120 syl2anc φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i b RSpan R b
122 119 121 sseldd φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i b i LSSum R RSpan R b
123 simpr φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i ¬ b i
124 117 122 123 ssnelpssd φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i i i LSSum R RSpan R b
125 1 60 55 52 70 113 lsmidl φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i i LSSum R RSpan R b LIdeal R
126 74 117 sstrd φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i I i LSSum R RSpan R b
127 125 126 jca φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i i LSSum R RSpan R b LIdeal R I i LSSum R RSpan R b
128 ovex i LSSum R RSpan R b V
129 psseq2 j = i LSSum R RSpan R b i j i i LSSum R RSpan R b
130 eleq1 j = i LSSum R RSpan R b j LIdeal R i LSSum R RSpan R b LIdeal R
131 sseq2 j = i LSSum R RSpan R b I j I i LSSum R RSpan R b
132 130 131 anbi12d j = i LSSum R RSpan R b j LIdeal R I j i LSSum R RSpan R b LIdeal R I i LSSum R RSpan R b
133 129 132 anbi12d j = i LSSum R RSpan R b i j j LIdeal R I j i i LSSum R RSpan R b i LSSum R RSpan R b LIdeal R I i LSSum R RSpan R b
134 ineq2 j = i LSSum R RSpan R b S j = S i LSSum R RSpan R b
135 134 eqeq1d j = i LSSum R RSpan R b S j = S i LSSum R RSpan R b =
136 135 notbid j = i LSSum R RSpan R b ¬ S j = ¬ S i LSSum R RSpan R b =
137 133 136 imbi12d j = i LSSum R RSpan R b i j j LIdeal R I j ¬ S j = i i LSSum R RSpan R b i LSSum R RSpan R b LIdeal R I i LSSum R RSpan R b ¬ S i LSSum R RSpan R b =
138 128 137 spcv j i j j LIdeal R I j ¬ S j = i i LSSum R RSpan R b i LSSum R RSpan R b LIdeal R I i LSSum R RSpan R b ¬ S i LSSum R RSpan R b =
139 82 94 138 3syl φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i i i LSSum R RSpan R b i LSSum R RSpan R b LIdeal R I i LSSum R RSpan R b ¬ S i LSSum R RSpan R b =
140 124 127 139 mp2and φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i ¬ S i LSSum R RSpan R b =
141 neq0 ¬ S i LSSum R RSpan R b = f f S i LSSum R RSpan R b
142 140 141 sylib φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i f f S i LSSum R RSpan R b
143 142 adantr φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f f S i LSSum R RSpan R b
144 52 ad2antrr φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b R Ring
145 144 ad2antrr φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m R Ring
146 53 ad2antrr φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b a B
147 146 ad2antrr φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m a B
148 eqid R = R
149 1 148 55 elrspsn R Ring a B m RSpan R a o B m = o R a
150 145 147 149 syl2anc φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m m RSpan R a o B m = o R a
151 144 ad6antr φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a y i f = y + R n R Ring
152 110 ad2antrr φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b b B
153 152 ad6antr φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a y i f = y + R n b B
154 1 148 55 elrspsn R Ring b B n RSpan R b q B n = q R b
155 151 153 154 syl2anc φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a y i f = y + R n n RSpan R b q B n = q R b
156 simp-7r φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a y i f = y + R n q B n = q R b e = x + R m
157 simpllr φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a y i f = y + R n q B n = q R b f = y + R n
158 156 157 oveq12d φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a y i f = y + R n q B n = q R b e R f = x + R m R y + R n
159 simp-5r φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a y i f = y + R n q B n = q R b m = o R a
160 159 oveq2d φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a y i f = y + R n q B n = q R b x + R m = x + R o R a
161 simpr φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a y i f = y + R n q B n = q R b n = q R b
162 161 oveq2d φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a y i f = y + R n q B n = q R b y + R n = y + R q R b
163 160 162 oveq12d φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a y i f = y + R n q B n = q R b x + R m R y + R n = x + R o R a R y + R q R b
164 eqid + R = + R
165 151 ad2antrr φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a y i f = y + R n q B n = q R b R Ring
166 21 ad7antr φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b i B
167 166 ad4antr φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a i B
168 167 ad4antr φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a y i f = y + R n q B n = q R b i B
169 simp-8r φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a y i f = y + R n q B n = q R b x i
170 168 169 sseldd φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a y i f = y + R n q B n = q R b x B
171 simp-6r φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a y i f = y + R n q B n = q R b o B
172 146 ad8antr φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a y i f = y + R n q B n = q R b a B
173 1 148 165 171 172 ringcld φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a y i f = y + R n q B n = q R b o R a B
174 simp-4r φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a y i f = y + R n q B n = q R b y i
175 168 174 sseldd φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a y i f = y + R n q B n = q R b y B
176 simplr φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a y i f = y + R n q B n = q R b q B
177 153 ad2antrr φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a y i f = y + R n q B n = q R b b B
178 1 148 165 176 177 ringcld φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a y i f = y + R n q B n = q R b q R b B
179 1 164 148 165 170 173 175 178 ringdi22 φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a y i f = y + R n q B n = q R b x + R o R a R y + R q R b = x R y + R o R a R y + R x R q R b + R o R a R q R b
180 158 163 179 3eqtrd φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a y i f = y + R n q B n = q R b e R f = x R y + R o R a R y + R x R q R b + R o R a R q R b
181 70 ad2antrr φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b i LIdeal R
182 181 ad8antr φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a y i f = y + R n q B n = q R b i LIdeal R
183 165 182 49 syl2anc φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a y i f = y + R n q B n = q R b i SubGrp R
184 18 1 148 165 182 170 174 lidlmcld φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a y i f = y + R n q B n = q R b x R y i
185 18 1 148 165 182 173 174 lidlmcld φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a y i f = y + R n q B n = q R b o R a R y i
186 164 183 184 185 subgcld φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a y i f = y + R n q B n = q R b x R y + R o R a R y i
187 8 ad7antr φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b R CRing
188 187 ad4antr φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a R CRing
189 188 ad4antr φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a y i f = y + R n q B n = q R b R CRing
190 1 148 189 170 178 crngcomd φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a y i f = y + R n q B n = q R b x R q R b = q R b R x
191 18 1 148 165 182 178 169 lidlmcld φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a y i f = y + R n q B n = q R b q R b R x i
192 190 191 eqeltrd φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a y i f = y + R n q B n = q R b x R q R b i
193 1 148 cringm4 R CRing o B a B q B b B o R a R q R b = o R q R a R b
194 189 171 172 176 177 193 syl122anc φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a y i f = y + R n q B n = q R b o R a R q R b = o R q R a R b
195 1 148 165 171 176 ringcld φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a y i f = y + R n q B n = q R b o R q B
196 simp-5r φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b a R b i
197 196 ad8antr φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a y i f = y + R n q B n = q R b a R b i
198 18 1 148 165 182 195 197 lidlmcld φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a y i f = y + R n q B n = q R b o R q R a R b i
199 194 198 eqeltrd φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a y i f = y + R n q B n = q R b o R a R q R b i
200 164 183 192 199 subgcld φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a y i f = y + R n q B n = q R b x R q R b + R o R a R q R b i
201 164 183 186 200 subgcld φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a y i f = y + R n q B n = q R b x R y + R o R a R y + R x R q R b + R o R a R q R b i
202 180 201 eqeltrd φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a y i f = y + R n q B n = q R b e R f i
203 202 r19.29an φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a y i f = y + R n q B n = q R b e R f i
204 155 203 sylbida φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a y i f = y + R n n RSpan R b e R f i
205 204 an32s φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a y i n RSpan R b f = y + R n e R f i
206 205 r19.29an φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a y i n RSpan R b f = y + R n e R f i
207 113 ad2antrr φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b RSpan R b LIdeal R
208 1 18 lidlss RSpan R b LIdeal R RSpan R b B
209 207 208 syl φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b RSpan R b B
210 209 ad4antr φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a RSpan R b B
211 simpr φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b f S i LSSum R RSpan R b
212 211 elin2d φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b f i LSSum R RSpan R b
213 212 ad4antr φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a f i LSSum R RSpan R b
214 1 164 60 lsmelvalx R CRing i B RSpan R b B f i LSSum R RSpan R b y i n RSpan R b f = y + R n
215 214 biimpa R CRing i B RSpan R b B f i LSSum R RSpan R b y i n RSpan R b f = y + R n
216 188 167 210 213 215 syl31anc φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a y i n RSpan R b f = y + R n
217 206 216 r19.29a φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a e R f i
218 217 r19.29an φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m o B m = o R a e R f i
219 150 218 sylbida φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i e = x + R m m RSpan R a e R f i
220 219 an32s φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i m RSpan R a e = x + R m e R f i
221 220 r19.29an φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i m RSpan R a e = x + R m e R f i
222 57 ad2antrr φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b RSpan R a LIdeal R
223 1 18 lidlss RSpan R a LIdeal R RSpan R a B
224 222 223 syl φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b RSpan R a B
225 simplr φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b e S i LSSum R RSpan R a
226 225 elin2d φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b e i LSSum R RSpan R a
227 1 164 60 lsmelvalx R CRing i B RSpan R a B e i LSSum R RSpan R a x i m RSpan R a e = x + R m
228 227 biimpa R CRing i B RSpan R a B e i LSSum R RSpan R a x i m RSpan R a e = x + R m
229 187 166 224 226 228 syl31anc φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b x i m RSpan R a e = x + R m
230 221 229 r19.29a φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b e R f i
231 5 148 mgpplusg R = + M
232 4 ad9antr φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b S SubMnd M
233 225 elin1d φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b e S
234 211 elin1d φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b f S
235 231 232 233 234 submcld φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b e R f S
236 230 235 elind φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b e R f i S
237 236 ne0d φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a f S i LSSum R RSpan R b i S
238 143 237 exlimddv φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i e S i LSSum R RSpan R a i S
239 109 238 exlimddv φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i i S
240 239 anasss φ i P j P ¬ i j a B b B a R b i ¬ a i ¬ b i i S
241 48 240 sylan2b φ i P j P ¬ i j a B b B a R b i ¬ a i b i i S
242 241 neneqd φ i P j P ¬ i j a B b B a R b i ¬ a i b i ¬ i S =
243 47 242 condan φ i P j P ¬ i j a B b B a R b i a i b i
244 243 ex φ i P j P ¬ i j a B b B a R b i a i b i
245 244 anasss φ i P j P ¬ i j a B b B a R b i a i b i
246 245 ralrimivva φ i P j P ¬ i j a B b B a R b i a i b i
247 1 148 isprmidlc R CRing i PrmIdeal R i LIdeal R i B a B b B a R b i a i b i
248 247 biimpar R CRing i LIdeal R i B a B b B a R b i a i b i i PrmIdeal R
249 8 12 46 246 248 syl13anc φ i P j P ¬ i j i PrmIdeal R
250 249 anasss φ i P j P ¬ i j i PrmIdeal R
251 simprr φ i P j P ¬ i j j P ¬ i j
252 250 251 jca φ i P j P ¬ i j i PrmIdeal R j P ¬ i j
253 5 1 mgpbas B = Base M
254 253 submss S SubMnd M S B
255 4 254 syl φ S B
256 1 13 3 255 6 7 ssdifidl φ i P j P ¬ i j
257 252 256 reximddv φ i P i PrmIdeal R j P ¬ i j