| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssdifidlprm.1 |
|
| 2 |
|
ssdifidlprm.2 |
|
| 3 |
|
ssdifidlprm.3 |
|
| 4 |
|
ssdifidlprm.4 |
|
| 5 |
|
ssdifidlprm.5 |
|
| 6 |
|
ssdifidlprm.6 |
|
| 7 |
|
ssdifidlprm.7 |
|
| 8 |
2
|
ad2antrr |
|
| 9 |
7
|
ssrab3 |
|
| 10 |
|
simpr |
|
| 11 |
9 10
|
sselid |
|
| 12 |
11
|
adantr |
|
| 13 |
2
|
crngringd |
|
| 14 |
|
eqid |
|
| 15 |
1 14
|
ringidcl |
|
| 16 |
13 15
|
syl |
|
| 17 |
16
|
ad2antrr |
|
| 18 |
|
eqid |
|
| 19 |
1 18
|
lidlss |
|
| 20 |
11 19
|
syl |
|
| 21 |
20
|
adantr |
|
| 22 |
|
incom |
|
| 23 |
22
|
eqeq1i |
|
| 24 |
|
ineq1 |
|
| 25 |
24
|
eqeq1d |
|
| 26 |
23 25
|
bitrid |
|
| 27 |
|
sseq2 |
|
| 28 |
26 27
|
anbi12d |
|
| 29 |
28 7
|
elrab2 |
|
| 30 |
29
|
biimpi |
|
| 31 |
30
|
simprd |
|
| 32 |
31
|
simpld |
|
| 33 |
32
|
ad2antlr |
|
| 34 |
|
reldisj |
|
| 35 |
34
|
biimpa |
|
| 36 |
21 33 35
|
syl2anc |
|
| 37 |
5 14
|
ringidval |
|
| 38 |
37
|
subm0cl |
|
| 39 |
4 38
|
syl |
|
| 40 |
39
|
ad2antrr |
|
| 41 |
|
elndif |
|
| 42 |
40 41
|
syl |
|
| 43 |
36 42
|
ssneldd |
|
| 44 |
|
nelne1 |
|
| 45 |
17 43 44
|
syl2anc |
|
| 46 |
45
|
necomd |
|
| 47 |
33
|
ad4antr |
|
| 48 |
|
ioran |
|
| 49 |
18
|
lidlsubg |
|
| 50 |
13 11 49
|
syl2an2r |
|
| 51 |
50
|
ad6antr |
|
| 52 |
13
|
ad7antr |
|
| 53 |
|
simp-5r |
|
| 54 |
53
|
snssd |
|
| 55 |
|
eqid |
|
| 56 |
55 1 18
|
rspcl |
|
| 57 |
52 54 56
|
syl2anc |
|
| 58 |
18
|
lidlsubg |
|
| 59 |
52 57 58
|
syl2anc |
|
| 60 |
|
eqid |
|
| 61 |
60
|
lsmub1 |
|
| 62 |
51 59 61
|
syl2anc |
|
| 63 |
60
|
lsmub2 |
|
| 64 |
51 59 63
|
syl2anc |
|
| 65 |
1 55
|
rspsnid |
|
| 66 |
52 53 65
|
syl2anc |
|
| 67 |
64 66
|
sseldd |
|
| 68 |
|
simplr |
|
| 69 |
62 67 68
|
ssnelpssd |
|
| 70 |
12
|
ad5antr |
|
| 71 |
1 60 55 52 70 57
|
lsmidl |
|
| 72 |
31
|
simprd |
|
| 73 |
72
|
adantl |
|
| 74 |
73
|
ad6antr |
|
| 75 |
74 62
|
sstrd |
|
| 76 |
71 75
|
jca |
|
| 77 |
|
simp-6r |
|
| 78 |
|
df-ral |
|
| 79 |
|
con2b |
|
| 80 |
79
|
albii |
|
| 81 |
78 80
|
bitri |
|
| 82 |
77 81
|
sylib |
|
| 83 |
|
ineq2 |
|
| 84 |
83
|
eqeq1d |
|
| 85 |
|
sseq2 |
|
| 86 |
84 85
|
anbi12d |
|
| 87 |
86 7
|
elrab2 |
|
| 88 |
87
|
baib |
|
| 89 |
88
|
rbaibd |
|
| 90 |
89
|
notbid |
|
| 91 |
90
|
biimpcd |
|
| 92 |
91
|
imim2i |
|
| 93 |
92
|
impd |
|
| 94 |
93
|
alimi |
|
| 95 |
|
ovex |
|
| 96 |
|
psseq2 |
|
| 97 |
|
eleq1 |
|
| 98 |
|
sseq2 |
|
| 99 |
97 98
|
anbi12d |
|
| 100 |
96 99
|
anbi12d |
|
| 101 |
|
ineq2 |
|
| 102 |
101
|
eqeq1d |
|
| 103 |
102
|
notbid |
|
| 104 |
100 103
|
imbi12d |
|
| 105 |
95 104
|
spcv |
|
| 106 |
82 94 105
|
3syl |
|
| 107 |
69 76 106
|
mp2and |
|
| 108 |
|
neq0 |
|
| 109 |
107 108
|
sylib |
|
| 110 |
|
simp-4r |
|
| 111 |
110
|
snssd |
|
| 112 |
55 1 18
|
rspcl |
|
| 113 |
52 111 112
|
syl2anc |
|
| 114 |
18
|
lidlsubg |
|
| 115 |
52 113 114
|
syl2anc |
|
| 116 |
60
|
lsmub1 |
|
| 117 |
51 115 116
|
syl2anc |
|
| 118 |
60
|
lsmub2 |
|
| 119 |
51 115 118
|
syl2anc |
|
| 120 |
1 55
|
rspsnid |
|
| 121 |
52 110 120
|
syl2anc |
|
| 122 |
119 121
|
sseldd |
|
| 123 |
|
simpr |
|
| 124 |
117 122 123
|
ssnelpssd |
|
| 125 |
1 60 55 52 70 113
|
lsmidl |
|
| 126 |
74 117
|
sstrd |
|
| 127 |
125 126
|
jca |
|
| 128 |
|
ovex |
|
| 129 |
|
psseq2 |
|
| 130 |
|
eleq1 |
|
| 131 |
|
sseq2 |
|
| 132 |
130 131
|
anbi12d |
|
| 133 |
129 132
|
anbi12d |
|
| 134 |
|
ineq2 |
|
| 135 |
134
|
eqeq1d |
|
| 136 |
135
|
notbid |
|
| 137 |
133 136
|
imbi12d |
|
| 138 |
128 137
|
spcv |
|
| 139 |
82 94 138
|
3syl |
|
| 140 |
124 127 139
|
mp2and |
|
| 141 |
|
neq0 |
|
| 142 |
140 141
|
sylib |
|
| 143 |
142
|
adantr |
|
| 144 |
52
|
ad2antrr |
|
| 145 |
144
|
ad2antrr |
|
| 146 |
53
|
ad2antrr |
|
| 147 |
146
|
ad2antrr |
|
| 148 |
|
eqid |
|
| 149 |
1 148 55
|
elrspsn |
|
| 150 |
145 147 149
|
syl2anc |
|
| 151 |
144
|
ad6antr |
|
| 152 |
110
|
ad2antrr |
|
| 153 |
152
|
ad6antr |
|
| 154 |
1 148 55
|
elrspsn |
|
| 155 |
151 153 154
|
syl2anc |
|
| 156 |
|
simp-7r |
|
| 157 |
|
simpllr |
|
| 158 |
156 157
|
oveq12d |
|
| 159 |
|
simp-5r |
|
| 160 |
159
|
oveq2d |
|
| 161 |
|
simpr |
|
| 162 |
161
|
oveq2d |
|
| 163 |
160 162
|
oveq12d |
|
| 164 |
|
eqid |
|
| 165 |
151
|
ad2antrr |
|
| 166 |
21
|
ad7antr |
|
| 167 |
166
|
ad4antr |
|
| 168 |
167
|
ad4antr |
|
| 169 |
|
simp-8r |
|
| 170 |
168 169
|
sseldd |
|
| 171 |
|
simp-6r |
|
| 172 |
146
|
ad8antr |
|
| 173 |
1 148 165 171 172
|
ringcld |
|
| 174 |
|
simp-4r |
|
| 175 |
168 174
|
sseldd |
|
| 176 |
|
simplr |
|
| 177 |
153
|
ad2antrr |
|
| 178 |
1 148 165 176 177
|
ringcld |
|
| 179 |
1 164 148 165 170 173 175 178
|
ringdi22 |
|
| 180 |
158 163 179
|
3eqtrd |
|
| 181 |
70
|
ad2antrr |
|
| 182 |
181
|
ad8antr |
|
| 183 |
165 182 49
|
syl2anc |
|
| 184 |
18 1 148 165 182 170 174
|
lidlmcld |
|
| 185 |
18 1 148 165 182 173 174
|
lidlmcld |
|
| 186 |
164 183 184 185
|
subgcld |
|
| 187 |
8
|
ad7antr |
|
| 188 |
187
|
ad4antr |
|
| 189 |
188
|
ad4antr |
|
| 190 |
1 148 189 170 178
|
crngcomd |
|
| 191 |
18 1 148 165 182 178 169
|
lidlmcld |
|
| 192 |
190 191
|
eqeltrd |
|
| 193 |
1 148
|
cringm4 |
|
| 194 |
189 171 172 176 177 193
|
syl122anc |
|
| 195 |
1 148 165 171 176
|
ringcld |
|
| 196 |
|
simp-5r |
|
| 197 |
196
|
ad8antr |
|
| 198 |
18 1 148 165 182 195 197
|
lidlmcld |
|
| 199 |
194 198
|
eqeltrd |
|
| 200 |
164 183 192 199
|
subgcld |
|
| 201 |
164 183 186 200
|
subgcld |
|
| 202 |
180 201
|
eqeltrd |
|
| 203 |
202
|
r19.29an |
|
| 204 |
155 203
|
sylbida |
|
| 205 |
204
|
an32s |
|
| 206 |
205
|
r19.29an |
|
| 207 |
113
|
ad2antrr |
|
| 208 |
1 18
|
lidlss |
|
| 209 |
207 208
|
syl |
|
| 210 |
209
|
ad4antr |
|
| 211 |
|
simpr |
|
| 212 |
211
|
elin2d |
|
| 213 |
212
|
ad4antr |
|
| 214 |
1 164 60
|
lsmelvalx |
|
| 215 |
214
|
biimpa |
|
| 216 |
188 167 210 213 215
|
syl31anc |
|
| 217 |
206 216
|
r19.29a |
|
| 218 |
217
|
r19.29an |
|
| 219 |
150 218
|
sylbida |
|
| 220 |
219
|
an32s |
|
| 221 |
220
|
r19.29an |
|
| 222 |
57
|
ad2antrr |
|
| 223 |
1 18
|
lidlss |
|
| 224 |
222 223
|
syl |
|
| 225 |
|
simplr |
|
| 226 |
225
|
elin2d |
|
| 227 |
1 164 60
|
lsmelvalx |
|
| 228 |
227
|
biimpa |
|
| 229 |
187 166 224 226 228
|
syl31anc |
|
| 230 |
221 229
|
r19.29a |
|
| 231 |
5 148
|
mgpplusg |
|
| 232 |
4
|
ad9antr |
|
| 233 |
225
|
elin1d |
|
| 234 |
211
|
elin1d |
|
| 235 |
231 232 233 234
|
submcld |
|
| 236 |
230 235
|
elind |
|
| 237 |
236
|
ne0d |
|
| 238 |
143 237
|
exlimddv |
|
| 239 |
109 238
|
exlimddv |
|
| 240 |
239
|
anasss |
|
| 241 |
48 240
|
sylan2b |
|
| 242 |
241
|
neneqd |
|
| 243 |
47 242
|
condan |
|
| 244 |
243
|
ex |
|
| 245 |
244
|
anasss |
|
| 246 |
245
|
ralrimivva |
|
| 247 |
1 148
|
isprmidlc |
|
| 248 |
247
|
biimpar |
|
| 249 |
8 12 46 246 248
|
syl13anc |
|
| 250 |
249
|
anasss |
|
| 251 |
|
simprr |
|
| 252 |
250 251
|
jca |
|
| 253 |
5 1
|
mgpbas |
|
| 254 |
253
|
submss |
|
| 255 |
4 254
|
syl |
|
| 256 |
1 13 3 255 6 7
|
ssdifidl |
|
| 257 |
252 256
|
reximddv |
|