| Step |
Hyp |
Ref |
Expression |
| 1 |
|
solin |
⊢ ( ( [⊊] Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝐵 [⊊] 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 [⊊] 𝐵 ) ) |
| 2 |
|
elex |
⊢ ( 𝐶 ∈ 𝐴 → 𝐶 ∈ V ) |
| 3 |
2
|
ad2antll |
⊢ ( ( [⊊] Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → 𝐶 ∈ V ) |
| 4 |
|
brrpssg |
⊢ ( 𝐶 ∈ V → ( 𝐵 [⊊] 𝐶 ↔ 𝐵 ⊊ 𝐶 ) ) |
| 5 |
3 4
|
syl |
⊢ ( ( [⊊] Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝐵 [⊊] 𝐶 ↔ 𝐵 ⊊ 𝐶 ) ) |
| 6 |
|
biidd |
⊢ ( ( [⊊] Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝐵 = 𝐶 ↔ 𝐵 = 𝐶 ) ) |
| 7 |
|
elex |
⊢ ( 𝐵 ∈ 𝐴 → 𝐵 ∈ V ) |
| 8 |
7
|
ad2antrl |
⊢ ( ( [⊊] Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → 𝐵 ∈ V ) |
| 9 |
|
brrpssg |
⊢ ( 𝐵 ∈ V → ( 𝐶 [⊊] 𝐵 ↔ 𝐶 ⊊ 𝐵 ) ) |
| 10 |
8 9
|
syl |
⊢ ( ( [⊊] Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝐶 [⊊] 𝐵 ↔ 𝐶 ⊊ 𝐵 ) ) |
| 11 |
5 6 10
|
3orbi123d |
⊢ ( ( [⊊] Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( ( 𝐵 [⊊] 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 [⊊] 𝐵 ) ↔ ( 𝐵 ⊊ 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 ⊊ 𝐵 ) ) ) |
| 12 |
1 11
|
mpbid |
⊢ ( ( [⊊] Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝐵 ⊊ 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 ⊊ 𝐵 ) ) |
| 13 |
|
sspsstri |
⊢ ( ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ↔ ( 𝐵 ⊊ 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 ⊊ 𝐵 ) ) |
| 14 |
12 13
|
sylibr |
⊢ ( ( [⊊] Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) |