| Step | Hyp | Ref | Expression | 
						
							| 1 |  | or32 | ⊢ ( ( ( 𝐴  ⊊  𝐵  ∨  𝐵  ⊊  𝐴 )  ∨  𝐴  =  𝐵 )  ↔  ( ( 𝐴  ⊊  𝐵  ∨  𝐴  =  𝐵 )  ∨  𝐵  ⊊  𝐴 ) ) | 
						
							| 2 |  | sspss | ⊢ ( 𝐴  ⊆  𝐵  ↔  ( 𝐴  ⊊  𝐵  ∨  𝐴  =  𝐵 ) ) | 
						
							| 3 |  | sspss | ⊢ ( 𝐵  ⊆  𝐴  ↔  ( 𝐵  ⊊  𝐴  ∨  𝐵  =  𝐴 ) ) | 
						
							| 4 |  | eqcom | ⊢ ( 𝐵  =  𝐴  ↔  𝐴  =  𝐵 ) | 
						
							| 5 | 4 | orbi2i | ⊢ ( ( 𝐵  ⊊  𝐴  ∨  𝐵  =  𝐴 )  ↔  ( 𝐵  ⊊  𝐴  ∨  𝐴  =  𝐵 ) ) | 
						
							| 6 | 3 5 | bitri | ⊢ ( 𝐵  ⊆  𝐴  ↔  ( 𝐵  ⊊  𝐴  ∨  𝐴  =  𝐵 ) ) | 
						
							| 7 | 2 6 | orbi12i | ⊢ ( ( 𝐴  ⊆  𝐵  ∨  𝐵  ⊆  𝐴 )  ↔  ( ( 𝐴  ⊊  𝐵  ∨  𝐴  =  𝐵 )  ∨  ( 𝐵  ⊊  𝐴  ∨  𝐴  =  𝐵 ) ) ) | 
						
							| 8 |  | orordir | ⊢ ( ( ( 𝐴  ⊊  𝐵  ∨  𝐵  ⊊  𝐴 )  ∨  𝐴  =  𝐵 )  ↔  ( ( 𝐴  ⊊  𝐵  ∨  𝐴  =  𝐵 )  ∨  ( 𝐵  ⊊  𝐴  ∨  𝐴  =  𝐵 ) ) ) | 
						
							| 9 | 7 8 | bitr4i | ⊢ ( ( 𝐴  ⊆  𝐵  ∨  𝐵  ⊆  𝐴 )  ↔  ( ( 𝐴  ⊊  𝐵  ∨  𝐵  ⊊  𝐴 )  ∨  𝐴  =  𝐵 ) ) | 
						
							| 10 |  | df-3or | ⊢ ( ( 𝐴  ⊊  𝐵  ∨  𝐴  =  𝐵  ∨  𝐵  ⊊  𝐴 )  ↔  ( ( 𝐴  ⊊  𝐵  ∨  𝐴  =  𝐵 )  ∨  𝐵  ⊊  𝐴 ) ) | 
						
							| 11 | 1 9 10 | 3bitr4i | ⊢ ( ( 𝐴  ⊆  𝐵  ∨  𝐵  ⊆  𝐴 )  ↔  ( 𝐴  ⊊  𝐵  ∨  𝐴  =  𝐵  ∨  𝐵  ⊊  𝐴 ) ) |