Metamath Proof Explorer
Description: An ideal is closed under left-multiplication by elements of the full
ring. (Contributed by Thierry Arnoux, 3-Jun-2025)
|
|
Ref |
Expression |
|
Hypotheses |
lidlmcld.1 |
⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) |
|
|
lidlmcld.2 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
|
|
lidlmcld.3 |
⊢ · = ( .r ‘ 𝑅 ) |
|
|
lidlmcld.4 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
|
|
lidlmcld.5 |
⊢ ( 𝜑 → 𝐼 ∈ 𝑈 ) |
|
|
lidlmcld.6 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
|
|
lidlmcld.7 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐼 ) |
|
Assertion |
lidlmcld |
⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) ∈ 𝐼 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
lidlmcld.1 |
⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) |
2 |
|
lidlmcld.2 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
|
lidlmcld.3 |
⊢ · = ( .r ‘ 𝑅 ) |
4 |
|
lidlmcld.4 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
5 |
|
lidlmcld.5 |
⊢ ( 𝜑 → 𝐼 ∈ 𝑈 ) |
6 |
|
lidlmcld.6 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
7 |
|
lidlmcld.7 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐼 ) |
8 |
1 2 3
|
lidlmcl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼 ) ) → ( 𝑋 · 𝑌 ) ∈ 𝐼 ) |
9 |
4 5 6 7 8
|
syl22anc |
⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) ∈ 𝐼 ) |