Metamath Proof Explorer


Theorem lidlmcld

Description: An ideal is closed under left-multiplication by elements of the full ring. (Contributed by Thierry Arnoux, 3-Jun-2025)

Ref Expression
Hypotheses lidlmcld.1 𝑈 = ( LIdeal ‘ 𝑅 )
lidlmcld.2 𝐵 = ( Base ‘ 𝑅 )
lidlmcld.3 · = ( .r𝑅 )
lidlmcld.4 ( 𝜑𝑅 ∈ Ring )
lidlmcld.5 ( 𝜑𝐼𝑈 )
lidlmcld.6 ( 𝜑𝑋𝐵 )
lidlmcld.7 ( 𝜑𝑌𝐼 )
Assertion lidlmcld ( 𝜑 → ( 𝑋 · 𝑌 ) ∈ 𝐼 )

Proof

Step Hyp Ref Expression
1 lidlmcld.1 𝑈 = ( LIdeal ‘ 𝑅 )
2 lidlmcld.2 𝐵 = ( Base ‘ 𝑅 )
3 lidlmcld.3 · = ( .r𝑅 )
4 lidlmcld.4 ( 𝜑𝑅 ∈ Ring )
5 lidlmcld.5 ( 𝜑𝐼𝑈 )
6 lidlmcld.6 ( 𝜑𝑋𝐵 )
7 lidlmcld.7 ( 𝜑𝑌𝐼 )
8 1 2 3 lidlmcl ( ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) ∧ ( 𝑋𝐵𝑌𝐼 ) ) → ( 𝑋 · 𝑌 ) ∈ 𝐼 )
9 4 5 6 7 8 syl22anc ( 𝜑 → ( 𝑋 · 𝑌 ) ∈ 𝐼 )