Description: An ideal is closed under left-multiplication by elements of the full ring. (Contributed by Thierry Arnoux, 3-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lidlmcld.1 | |- U = ( LIdeal ` R ) |
|
| lidlmcld.2 | |- B = ( Base ` R ) |
||
| lidlmcld.3 | |- .x. = ( .r ` R ) |
||
| lidlmcld.4 | |- ( ph -> R e. Ring ) |
||
| lidlmcld.5 | |- ( ph -> I e. U ) |
||
| lidlmcld.6 | |- ( ph -> X e. B ) |
||
| lidlmcld.7 | |- ( ph -> Y e. I ) |
||
| Assertion | lidlmcld | |- ( ph -> ( X .x. Y ) e. I ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lidlmcld.1 | |- U = ( LIdeal ` R ) |
|
| 2 | lidlmcld.2 | |- B = ( Base ` R ) |
|
| 3 | lidlmcld.3 | |- .x. = ( .r ` R ) |
|
| 4 | lidlmcld.4 | |- ( ph -> R e. Ring ) |
|
| 5 | lidlmcld.5 | |- ( ph -> I e. U ) |
|
| 6 | lidlmcld.6 | |- ( ph -> X e. B ) |
|
| 7 | lidlmcld.7 | |- ( ph -> Y e. I ) |
|
| 8 | 1 2 3 | lidlmcl | |- ( ( ( R e. Ring /\ I e. U ) /\ ( X e. B /\ Y e. I ) ) -> ( X .x. Y ) e. I ) |
| 9 | 4 5 6 7 8 | syl22anc | |- ( ph -> ( X .x. Y ) e. I ) |