Metamath Proof Explorer


Theorem lidlmcld

Description: An ideal is closed under left-multiplication by elements of the full ring. (Contributed by Thierry Arnoux, 3-Jun-2025)

Ref Expression
Hypotheses lidlmcld.1
|- U = ( LIdeal ` R )
lidlmcld.2
|- B = ( Base ` R )
lidlmcld.3
|- .x. = ( .r ` R )
lidlmcld.4
|- ( ph -> R e. Ring )
lidlmcld.5
|- ( ph -> I e. U )
lidlmcld.6
|- ( ph -> X e. B )
lidlmcld.7
|- ( ph -> Y e. I )
Assertion lidlmcld
|- ( ph -> ( X .x. Y ) e. I )

Proof

Step Hyp Ref Expression
1 lidlmcld.1
 |-  U = ( LIdeal ` R )
2 lidlmcld.2
 |-  B = ( Base ` R )
3 lidlmcld.3
 |-  .x. = ( .r ` R )
4 lidlmcld.4
 |-  ( ph -> R e. Ring )
5 lidlmcld.5
 |-  ( ph -> I e. U )
6 lidlmcld.6
 |-  ( ph -> X e. B )
7 lidlmcld.7
 |-  ( ph -> Y e. I )
8 1 2 3 lidlmcl
 |-  ( ( ( R e. Ring /\ I e. U ) /\ ( X e. B /\ Y e. I ) ) -> ( X .x. Y ) e. I )
9 4 5 6 7 8 syl22anc
 |-  ( ph -> ( X .x. Y ) e. I )