| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp3 |
|- ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) -> C C_ ( LIdeal ` R ) ) |
| 2 |
1
|
sselda |
|- ( ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) /\ i e. C ) -> i e. ( LIdeal ` R ) ) |
| 3 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 4 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
| 5 |
3 4
|
lidlss |
|- ( i e. ( LIdeal ` R ) -> i C_ ( Base ` R ) ) |
| 6 |
2 5
|
syl |
|- ( ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) /\ i e. C ) -> i C_ ( Base ` R ) ) |
| 7 |
6
|
ralrimiva |
|- ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) -> A. i e. C i C_ ( Base ` R ) ) |
| 8 |
|
pwssb |
|- ( C C_ ~P ( Base ` R ) <-> A. i e. C i C_ ( Base ` R ) ) |
| 9 |
7 8
|
sylibr |
|- ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) -> C C_ ~P ( Base ` R ) ) |
| 10 |
|
simp2 |
|- ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) -> C =/= (/) ) |
| 11 |
|
intss2 |
|- ( C C_ ~P ( Base ` R ) -> ( C =/= (/) -> |^| C C_ ( Base ` R ) ) ) |
| 12 |
11
|
imp |
|- ( ( C C_ ~P ( Base ` R ) /\ C =/= (/) ) -> |^| C C_ ( Base ` R ) ) |
| 13 |
9 10 12
|
syl2anc |
|- ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) -> |^| C C_ ( Base ` R ) ) |
| 14 |
|
simpl1 |
|- ( ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) /\ i e. C ) -> R e. Ring ) |
| 15 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 16 |
4 15
|
lidl0cl |
|- ( ( R e. Ring /\ i e. ( LIdeal ` R ) ) -> ( 0g ` R ) e. i ) |
| 17 |
14 2 16
|
syl2anc |
|- ( ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) /\ i e. C ) -> ( 0g ` R ) e. i ) |
| 18 |
17
|
ralrimiva |
|- ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) -> A. i e. C ( 0g ` R ) e. i ) |
| 19 |
|
fvex |
|- ( 0g ` R ) e. _V |
| 20 |
19
|
elint2 |
|- ( ( 0g ` R ) e. |^| C <-> A. i e. C ( 0g ` R ) e. i ) |
| 21 |
18 20
|
sylibr |
|- ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) -> ( 0g ` R ) e. |^| C ) |
| 22 |
21
|
ne0d |
|- ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) -> |^| C =/= (/) ) |
| 23 |
14
|
ad5ant15 |
|- ( ( ( ( ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) /\ x e. ( Base ` R ) ) /\ a e. |^| C ) /\ b e. |^| C ) /\ i e. C ) -> R e. Ring ) |
| 24 |
2
|
ad5ant15 |
|- ( ( ( ( ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) /\ x e. ( Base ` R ) ) /\ a e. |^| C ) /\ b e. |^| C ) /\ i e. C ) -> i e. ( LIdeal ` R ) ) |
| 25 |
|
simp-4r |
|- ( ( ( ( ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) /\ x e. ( Base ` R ) ) /\ a e. |^| C ) /\ b e. |^| C ) /\ i e. C ) -> x e. ( Base ` R ) ) |
| 26 |
|
simpllr |
|- ( ( ( ( ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) /\ x e. ( Base ` R ) ) /\ a e. |^| C ) /\ b e. |^| C ) /\ i e. C ) -> a e. |^| C ) |
| 27 |
|
simpr |
|- ( ( ( ( ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) /\ x e. ( Base ` R ) ) /\ a e. |^| C ) /\ b e. |^| C ) /\ i e. C ) -> i e. C ) |
| 28 |
|
elinti |
|- ( a e. |^| C -> ( i e. C -> a e. i ) ) |
| 29 |
28
|
imp |
|- ( ( a e. |^| C /\ i e. C ) -> a e. i ) |
| 30 |
26 27 29
|
syl2anc |
|- ( ( ( ( ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) /\ x e. ( Base ` R ) ) /\ a e. |^| C ) /\ b e. |^| C ) /\ i e. C ) -> a e. i ) |
| 31 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 32 |
4 3 31
|
lidlmcl |
|- ( ( ( R e. Ring /\ i e. ( LIdeal ` R ) ) /\ ( x e. ( Base ` R ) /\ a e. i ) ) -> ( x ( .r ` R ) a ) e. i ) |
| 33 |
23 24 25 30 32
|
syl22anc |
|- ( ( ( ( ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) /\ x e. ( Base ` R ) ) /\ a e. |^| C ) /\ b e. |^| C ) /\ i e. C ) -> ( x ( .r ` R ) a ) e. i ) |
| 34 |
|
elinti |
|- ( b e. |^| C -> ( i e. C -> b e. i ) ) |
| 35 |
34
|
imp |
|- ( ( b e. |^| C /\ i e. C ) -> b e. i ) |
| 36 |
35
|
adantll |
|- ( ( ( ( ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) /\ x e. ( Base ` R ) ) /\ a e. |^| C ) /\ b e. |^| C ) /\ i e. C ) -> b e. i ) |
| 37 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 38 |
4 37
|
lidlacl |
|- ( ( ( R e. Ring /\ i e. ( LIdeal ` R ) ) /\ ( ( x ( .r ` R ) a ) e. i /\ b e. i ) ) -> ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. i ) |
| 39 |
23 24 33 36 38
|
syl22anc |
|- ( ( ( ( ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) /\ x e. ( Base ` R ) ) /\ a e. |^| C ) /\ b e. |^| C ) /\ i e. C ) -> ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. i ) |
| 40 |
39
|
ralrimiva |
|- ( ( ( ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) /\ x e. ( Base ` R ) ) /\ a e. |^| C ) /\ b e. |^| C ) -> A. i e. C ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. i ) |
| 41 |
|
ovex |
|- ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. _V |
| 42 |
41
|
elint2 |
|- ( ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. |^| C <-> A. i e. C ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. i ) |
| 43 |
40 42
|
sylibr |
|- ( ( ( ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) /\ x e. ( Base ` R ) ) /\ a e. |^| C ) /\ b e. |^| C ) -> ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. |^| C ) |
| 44 |
43
|
ralrimiva |
|- ( ( ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) /\ x e. ( Base ` R ) ) /\ a e. |^| C ) -> A. b e. |^| C ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. |^| C ) |
| 45 |
44
|
anasss |
|- ( ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) /\ ( x e. ( Base ` R ) /\ a e. |^| C ) ) -> A. b e. |^| C ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. |^| C ) |
| 46 |
45
|
ralrimivva |
|- ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) -> A. x e. ( Base ` R ) A. a e. |^| C A. b e. |^| C ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. |^| C ) |
| 47 |
4 3 37 31
|
islidl |
|- ( |^| C e. ( LIdeal ` R ) <-> ( |^| C C_ ( Base ` R ) /\ |^| C =/= (/) /\ A. x e. ( Base ` R ) A. a e. |^| C A. b e. |^| C ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. |^| C ) ) |
| 48 |
13 22 46 47
|
syl3anbrc |
|- ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) -> |^| C e. ( LIdeal ` R ) ) |