Step |
Hyp |
Ref |
Expression |
1 |
|
simp3 |
|- ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) -> C C_ ( LIdeal ` R ) ) |
2 |
1
|
sselda |
|- ( ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) /\ i e. C ) -> i e. ( LIdeal ` R ) ) |
3 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
4 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
5 |
3 4
|
lidlss |
|- ( i e. ( LIdeal ` R ) -> i C_ ( Base ` R ) ) |
6 |
2 5
|
syl |
|- ( ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) /\ i e. C ) -> i C_ ( Base ` R ) ) |
7 |
6
|
ralrimiva |
|- ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) -> A. i e. C i C_ ( Base ` R ) ) |
8 |
|
pwssb |
|- ( C C_ ~P ( Base ` R ) <-> A. i e. C i C_ ( Base ` R ) ) |
9 |
7 8
|
sylibr |
|- ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) -> C C_ ~P ( Base ` R ) ) |
10 |
|
simp2 |
|- ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) -> C =/= (/) ) |
11 |
|
intss2 |
|- ( C C_ ~P ( Base ` R ) -> ( C =/= (/) -> |^| C C_ ( Base ` R ) ) ) |
12 |
11
|
imp |
|- ( ( C C_ ~P ( Base ` R ) /\ C =/= (/) ) -> |^| C C_ ( Base ` R ) ) |
13 |
9 10 12
|
syl2anc |
|- ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) -> |^| C C_ ( Base ` R ) ) |
14 |
|
simpl1 |
|- ( ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) /\ i e. C ) -> R e. Ring ) |
15 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
16 |
4 15
|
lidl0cl |
|- ( ( R e. Ring /\ i e. ( LIdeal ` R ) ) -> ( 0g ` R ) e. i ) |
17 |
14 2 16
|
syl2anc |
|- ( ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) /\ i e. C ) -> ( 0g ` R ) e. i ) |
18 |
17
|
ralrimiva |
|- ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) -> A. i e. C ( 0g ` R ) e. i ) |
19 |
|
fvex |
|- ( 0g ` R ) e. _V |
20 |
19
|
elint2 |
|- ( ( 0g ` R ) e. |^| C <-> A. i e. C ( 0g ` R ) e. i ) |
21 |
18 20
|
sylibr |
|- ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) -> ( 0g ` R ) e. |^| C ) |
22 |
21
|
ne0d |
|- ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) -> |^| C =/= (/) ) |
23 |
14
|
ad5ant15 |
|- ( ( ( ( ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) /\ x e. ( Base ` R ) ) /\ a e. |^| C ) /\ b e. |^| C ) /\ i e. C ) -> R e. Ring ) |
24 |
2
|
ad5ant15 |
|- ( ( ( ( ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) /\ x e. ( Base ` R ) ) /\ a e. |^| C ) /\ b e. |^| C ) /\ i e. C ) -> i e. ( LIdeal ` R ) ) |
25 |
|
simp-4r |
|- ( ( ( ( ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) /\ x e. ( Base ` R ) ) /\ a e. |^| C ) /\ b e. |^| C ) /\ i e. C ) -> x e. ( Base ` R ) ) |
26 |
|
simpllr |
|- ( ( ( ( ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) /\ x e. ( Base ` R ) ) /\ a e. |^| C ) /\ b e. |^| C ) /\ i e. C ) -> a e. |^| C ) |
27 |
|
simpr |
|- ( ( ( ( ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) /\ x e. ( Base ` R ) ) /\ a e. |^| C ) /\ b e. |^| C ) /\ i e. C ) -> i e. C ) |
28 |
|
elinti |
|- ( a e. |^| C -> ( i e. C -> a e. i ) ) |
29 |
28
|
imp |
|- ( ( a e. |^| C /\ i e. C ) -> a e. i ) |
30 |
26 27 29
|
syl2anc |
|- ( ( ( ( ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) /\ x e. ( Base ` R ) ) /\ a e. |^| C ) /\ b e. |^| C ) /\ i e. C ) -> a e. i ) |
31 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
32 |
4 3 31
|
lidlmcl |
|- ( ( ( R e. Ring /\ i e. ( LIdeal ` R ) ) /\ ( x e. ( Base ` R ) /\ a e. i ) ) -> ( x ( .r ` R ) a ) e. i ) |
33 |
23 24 25 30 32
|
syl22anc |
|- ( ( ( ( ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) /\ x e. ( Base ` R ) ) /\ a e. |^| C ) /\ b e. |^| C ) /\ i e. C ) -> ( x ( .r ` R ) a ) e. i ) |
34 |
|
elinti |
|- ( b e. |^| C -> ( i e. C -> b e. i ) ) |
35 |
34
|
imp |
|- ( ( b e. |^| C /\ i e. C ) -> b e. i ) |
36 |
35
|
adantll |
|- ( ( ( ( ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) /\ x e. ( Base ` R ) ) /\ a e. |^| C ) /\ b e. |^| C ) /\ i e. C ) -> b e. i ) |
37 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
38 |
4 37
|
lidlacl |
|- ( ( ( R e. Ring /\ i e. ( LIdeal ` R ) ) /\ ( ( x ( .r ` R ) a ) e. i /\ b e. i ) ) -> ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. i ) |
39 |
23 24 33 36 38
|
syl22anc |
|- ( ( ( ( ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) /\ x e. ( Base ` R ) ) /\ a e. |^| C ) /\ b e. |^| C ) /\ i e. C ) -> ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. i ) |
40 |
39
|
ralrimiva |
|- ( ( ( ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) /\ x e. ( Base ` R ) ) /\ a e. |^| C ) /\ b e. |^| C ) -> A. i e. C ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. i ) |
41 |
|
ovex |
|- ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. _V |
42 |
41
|
elint2 |
|- ( ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. |^| C <-> A. i e. C ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. i ) |
43 |
40 42
|
sylibr |
|- ( ( ( ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) /\ x e. ( Base ` R ) ) /\ a e. |^| C ) /\ b e. |^| C ) -> ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. |^| C ) |
44 |
43
|
ralrimiva |
|- ( ( ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) /\ x e. ( Base ` R ) ) /\ a e. |^| C ) -> A. b e. |^| C ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. |^| C ) |
45 |
44
|
anasss |
|- ( ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) /\ ( x e. ( Base ` R ) /\ a e. |^| C ) ) -> A. b e. |^| C ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. |^| C ) |
46 |
45
|
ralrimivva |
|- ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) -> A. x e. ( Base ` R ) A. a e. |^| C A. b e. |^| C ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. |^| C ) |
47 |
4 3 37 31
|
islidl |
|- ( |^| C e. ( LIdeal ` R ) <-> ( |^| C C_ ( Base ` R ) /\ |^| C =/= (/) /\ A. x e. ( Base ` R ) A. a e. |^| C A. b e. |^| C ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. |^| C ) ) |
48 |
13 22 46 47
|
syl3anbrc |
|- ( ( R e. Ring /\ C =/= (/) /\ C C_ ( LIdeal ` R ) ) -> |^| C e. ( LIdeal ` R ) ) |