Description: The intersection of a nonempty collection of ideals is an ideal. (Contributed by Thierry Arnoux, 8-Jun-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | intlidl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 | |
|
2 | 1 | sselda | |
3 | eqid | |
|
4 | eqid | |
|
5 | 3 4 | lidlss | |
6 | 2 5 | syl | |
7 | 6 | ralrimiva | |
8 | pwssb | |
|
9 | 7 8 | sylibr | |
10 | simp2 | |
|
11 | intss2 | |
|
12 | 11 | imp | |
13 | 9 10 12 | syl2anc | |
14 | simpl1 | |
|
15 | eqid | |
|
16 | 4 15 | lidl0cl | |
17 | 14 2 16 | syl2anc | |
18 | 17 | ralrimiva | |
19 | fvex | |
|
20 | 19 | elint2 | |
21 | 18 20 | sylibr | |
22 | 21 | ne0d | |
23 | 14 | ad5ant15 | |
24 | 2 | ad5ant15 | |
25 | simp-4r | |
|
26 | simpllr | |
|
27 | simpr | |
|
28 | elinti | |
|
29 | 28 | imp | |
30 | 26 27 29 | syl2anc | |
31 | eqid | |
|
32 | 4 3 31 | lidlmcl | |
33 | 23 24 25 30 32 | syl22anc | |
34 | elinti | |
|
35 | 34 | imp | |
36 | 35 | adantll | |
37 | eqid | |
|
38 | 4 37 | lidlacl | |
39 | 23 24 33 36 38 | syl22anc | |
40 | 39 | ralrimiva | |
41 | ovex | |
|
42 | 41 | elint2 | |
43 | 40 42 | sylibr | |
44 | 43 | ralrimiva | |
45 | 44 | anasss | |
46 | 45 | ralrimivva | |
47 | 4 3 37 31 | islidl | |
48 | 13 22 46 47 | syl3anbrc | |