Metamath Proof Explorer


Theorem intlidl

Description: The intersection of a nonempty collection of ideals is an ideal. (Contributed by Thierry Arnoux, 8-Jun-2024)

Ref Expression
Assertion intlidl RRingCCLIdealRCLIdealR

Proof

Step Hyp Ref Expression
1 simp3 RRingCCLIdealRCLIdealR
2 1 sselda RRingCCLIdealRiCiLIdealR
3 eqid BaseR=BaseR
4 eqid LIdealR=LIdealR
5 3 4 lidlss iLIdealRiBaseR
6 2 5 syl RRingCCLIdealRiCiBaseR
7 6 ralrimiva RRingCCLIdealRiCiBaseR
8 pwssb C𝒫BaseRiCiBaseR
9 7 8 sylibr RRingCCLIdealRC𝒫BaseR
10 simp2 RRingCCLIdealRC
11 intss2 C𝒫BaseRCCBaseR
12 11 imp C𝒫BaseRCCBaseR
13 9 10 12 syl2anc RRingCCLIdealRCBaseR
14 simpl1 RRingCCLIdealRiCRRing
15 eqid 0R=0R
16 4 15 lidl0cl RRingiLIdealR0Ri
17 14 2 16 syl2anc RRingCCLIdealRiC0Ri
18 17 ralrimiva RRingCCLIdealRiC0Ri
19 fvex 0RV
20 19 elint2 0RCiC0Ri
21 18 20 sylibr RRingCCLIdealR0RC
22 21 ne0d RRingCCLIdealRC
23 14 ad5ant15 RRingCCLIdealRxBaseRaCbCiCRRing
24 2 ad5ant15 RRingCCLIdealRxBaseRaCbCiCiLIdealR
25 simp-4r RRingCCLIdealRxBaseRaCbCiCxBaseR
26 simpllr RRingCCLIdealRxBaseRaCbCiCaC
27 simpr RRingCCLIdealRxBaseRaCbCiCiC
28 elinti aCiCai
29 28 imp aCiCai
30 26 27 29 syl2anc RRingCCLIdealRxBaseRaCbCiCai
31 eqid R=R
32 4 3 31 lidlmcl RRingiLIdealRxBaseRaixRai
33 23 24 25 30 32 syl22anc RRingCCLIdealRxBaseRaCbCiCxRai
34 elinti bCiCbi
35 34 imp bCiCbi
36 35 adantll RRingCCLIdealRxBaseRaCbCiCbi
37 eqid +R=+R
38 4 37 lidlacl RRingiLIdealRxRaibixRa+Rbi
39 23 24 33 36 38 syl22anc RRingCCLIdealRxBaseRaCbCiCxRa+Rbi
40 39 ralrimiva RRingCCLIdealRxBaseRaCbCiCxRa+Rbi
41 ovex xRa+RbV
42 41 elint2 xRa+RbCiCxRa+Rbi
43 40 42 sylibr RRingCCLIdealRxBaseRaCbCxRa+RbC
44 43 ralrimiva RRingCCLIdealRxBaseRaCbCxRa+RbC
45 44 anasss RRingCCLIdealRxBaseRaCbCxRa+RbC
46 45 ralrimivva RRingCCLIdealRxBaseRaCbCxRa+RbC
47 4 3 37 31 islidl CLIdealRCBaseRCxBaseRaCbCxRa+RbC
48 13 22 46 47 syl3anbrc RRingCCLIdealRCLIdealR