Description: A quotient of a non-zero ring by a proper ideal is a non-zero ring. (Contributed by Thierry Arnoux, 9-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | qsnzr.q | |
|
qsnzr.1 | |
||
qsnzr.r | |
||
qsnzr.z | |
||
qsnzr.i | |
||
qsnzr.2 | |
||
Assertion | qsnzr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qsnzr.q | |
|
2 | qsnzr.1 | |
|
3 | qsnzr.r | |
|
4 | qsnzr.z | |
|
5 | qsnzr.i | |
|
6 | qsnzr.2 | |
|
7 | eqid | |
|
8 | 1 7 | qusring | |
9 | 3 5 8 | syl2anc | |
10 | ringgrp | |
|
11 | eqid | |
|
12 | eqid | |
|
13 | 11 12 | grpinvid | |
14 | 3 10 13 | 3syl | |
15 | 14 | oveq1d | |
16 | eqid | |
|
17 | 3 10 | syl | |
18 | eqid | |
|
19 | 2 18 | ringidcl | |
20 | 3 19 | syl | |
21 | 2 16 11 17 20 | grplidd | |
22 | 15 21 | eqtrd | |
23 | 5 | 2idllidld | |
24 | 2 18 | pridln1 | |
25 | 3 23 6 24 | syl3anc | |
26 | 22 25 | eqneltrd | |
27 | 3 | adantr | |
28 | lidlnsg | |
|
29 | 3 23 28 | syl2anc | |
30 | nsgsubg | |
|
31 | 29 30 | syl | |
32 | 2 | subgss | |
33 | 31 32 | syl | |
34 | 33 | adantr | |
35 | eqid | |
|
36 | 2 35 | eqger | |
37 | 31 36 | syl | |
38 | 37 | adantr | |
39 | simpr | |
|
40 | 38 39 | ersym | |
41 | 2 12 16 35 | eqgval | |
42 | 41 | biimpa | |
43 | 42 | simp3d | |
44 | 27 34 40 43 | syl21anc | |
45 | 26 44 | mtand | |
46 | 37 20 | erth | |
47 | 45 46 | mtbid | |
48 | 47 | neqned | |
49 | 1 7 18 | qus1 | |
50 | 3 5 49 | syl2anc | |
51 | 50 | simprd | |
52 | 1 11 | qus0 | |
53 | 29 52 | syl | |
54 | 48 51 53 | 3netr3d | |
55 | eqid | |
|
56 | eqid | |
|
57 | 55 56 | isnzr | |
58 | 9 54 57 | sylanbrc | |