Metamath Proof Explorer


Theorem qsnzr

Description: A quotient of a non-zero ring by a proper ideal is a non-zero ring. (Contributed by Thierry Arnoux, 9-Mar-2025)

Ref Expression
Hypotheses qsnzr.q Q=R/𝑠R~QGI
qsnzr.1 B=BaseR
qsnzr.r φRRing
qsnzr.z φRNzRing
qsnzr.i φI2IdealR
qsnzr.2 φIB
Assertion qsnzr φQNzRing

Proof

Step Hyp Ref Expression
1 qsnzr.q Q=R/𝑠R~QGI
2 qsnzr.1 B=BaseR
3 qsnzr.r φRRing
4 qsnzr.z φRNzRing
5 qsnzr.i φI2IdealR
6 qsnzr.2 φIB
7 eqid 2IdealR=2IdealR
8 1 7 qusring RRingI2IdealRQRing
9 3 5 8 syl2anc φQRing
10 ringgrp RRingRGrp
11 eqid 0R=0R
12 eqid invgR=invgR
13 11 12 grpinvid RGrpinvgR0R=0R
14 3 10 13 3syl φinvgR0R=0R
15 14 oveq1d φinvgR0R+R1R=0R+R1R
16 eqid +R=+R
17 3 10 syl φRGrp
18 eqid 1R=1R
19 2 18 ringidcl RRing1RB
20 3 19 syl φ1RB
21 2 16 11 17 20 grplidd φ0R+R1R=1R
22 15 21 eqtrd φinvgR0R+R1R=1R
23 5 2idllidld φILIdealR
24 2 18 pridln1 RRingILIdealRIB¬1RI
25 3 23 6 24 syl3anc φ¬1RI
26 22 25 eqneltrd φ¬invgR0R+R1RI
27 3 adantr φ1RR~QGI0RRRing
28 lidlnsg RRingILIdealRINrmSGrpR
29 3 23 28 syl2anc φINrmSGrpR
30 nsgsubg INrmSGrpRISubGrpR
31 29 30 syl φISubGrpR
32 2 subgss ISubGrpRIB
33 31 32 syl φIB
34 33 adantr φ1RR~QGI0RIB
35 eqid R~QGI=R~QGI
36 2 35 eqger ISubGrpRR~QGIErB
37 31 36 syl φR~QGIErB
38 37 adantr φ1RR~QGI0RR~QGIErB
39 simpr φ1RR~QGI0R1RR~QGI0R
40 38 39 ersym φ1RR~QGI0R0RR~QGI1R
41 2 12 16 35 eqgval RRingIB0RR~QGI1R0RB1RBinvgR0R+R1RI
42 41 biimpa RRingIB0RR~QGI1R0RB1RBinvgR0R+R1RI
43 42 simp3d RRingIB0RR~QGI1RinvgR0R+R1RI
44 27 34 40 43 syl21anc φ1RR~QGI0RinvgR0R+R1RI
45 26 44 mtand φ¬1RR~QGI0R
46 37 20 erth φ1RR~QGI0R1RR~QGI=0RR~QGI
47 45 46 mtbid φ¬1RR~QGI=0RR~QGI
48 47 neqned φ1RR~QGI0RR~QGI
49 1 7 18 qus1 RRingI2IdealRQRing1RR~QGI=1Q
50 3 5 49 syl2anc φQRing1RR~QGI=1Q
51 50 simprd φ1RR~QGI=1Q
52 1 11 qus0 INrmSGrpR0RR~QGI=0Q
53 29 52 syl φ0RR~QGI=0Q
54 48 51 53 3netr3d φ1Q0Q
55 eqid 1Q=1Q
56 eqid 0Q=0Q
57 55 56 isnzr QNzRingQRing1Q0Q
58 9 54 57 sylanbrc φQNzRing