| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qsnzr.q |
|
| 2 |
|
qsnzr.1 |
|
| 3 |
|
qsnzr.r |
|
| 4 |
|
qsnzr.z |
|
| 5 |
|
qsnzr.i |
|
| 6 |
|
qsnzr.2 |
|
| 7 |
|
eqid |
|
| 8 |
1 7
|
qusring |
|
| 9 |
3 5 8
|
syl2anc |
|
| 10 |
|
ringgrp |
|
| 11 |
|
eqid |
|
| 12 |
|
eqid |
|
| 13 |
11 12
|
grpinvid |
|
| 14 |
3 10 13
|
3syl |
|
| 15 |
14
|
oveq1d |
|
| 16 |
|
eqid |
|
| 17 |
3 10
|
syl |
|
| 18 |
|
eqid |
|
| 19 |
2 18
|
ringidcl |
|
| 20 |
3 19
|
syl |
|
| 21 |
2 16 11 17 20
|
grplidd |
|
| 22 |
15 21
|
eqtrd |
|
| 23 |
5
|
2idllidld |
|
| 24 |
2 18
|
pridln1 |
|
| 25 |
3 23 6 24
|
syl3anc |
|
| 26 |
22 25
|
eqneltrd |
|
| 27 |
3
|
adantr |
|
| 28 |
|
lidlnsg |
|
| 29 |
3 23 28
|
syl2anc |
|
| 30 |
|
nsgsubg |
|
| 31 |
29 30
|
syl |
|
| 32 |
2
|
subgss |
|
| 33 |
31 32
|
syl |
|
| 34 |
33
|
adantr |
|
| 35 |
|
eqid |
|
| 36 |
2 35
|
eqger |
|
| 37 |
31 36
|
syl |
|
| 38 |
37
|
adantr |
|
| 39 |
|
simpr |
|
| 40 |
38 39
|
ersym |
|
| 41 |
2 12 16 35
|
eqgval |
|
| 42 |
41
|
biimpa |
|
| 43 |
42
|
simp3d |
|
| 44 |
27 34 40 43
|
syl21anc |
|
| 45 |
26 44
|
mtand |
|
| 46 |
37 20
|
erth |
|
| 47 |
45 46
|
mtbid |
|
| 48 |
47
|
neqned |
|
| 49 |
1 7 18
|
qus1 |
|
| 50 |
3 5 49
|
syl2anc |
|
| 51 |
50
|
simprd |
|
| 52 |
1 11
|
qus0 |
|
| 53 |
29 52
|
syl |
|
| 54 |
48 51 53
|
3netr3d |
|
| 55 |
|
eqid |
|
| 56 |
|
eqid |
|
| 57 |
55 56
|
isnzr |
|
| 58 |
9 54 57
|
sylanbrc |
|