Step |
Hyp |
Ref |
Expression |
1 |
|
qsnzr.q |
|- Q = ( R /s ( R ~QG I ) ) |
2 |
|
qsnzr.1 |
|- B = ( Base ` R ) |
3 |
|
qsnzr.r |
|- ( ph -> R e. Ring ) |
4 |
|
qsnzr.z |
|- ( ph -> R e. NzRing ) |
5 |
|
qsnzr.i |
|- ( ph -> I e. ( 2Ideal ` R ) ) |
6 |
|
qsnzr.2 |
|- ( ph -> I =/= B ) |
7 |
|
eqid |
|- ( 2Ideal ` R ) = ( 2Ideal ` R ) |
8 |
1 7
|
qusring |
|- ( ( R e. Ring /\ I e. ( 2Ideal ` R ) ) -> Q e. Ring ) |
9 |
3 5 8
|
syl2anc |
|- ( ph -> Q e. Ring ) |
10 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
11 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
12 |
|
eqid |
|- ( invg ` R ) = ( invg ` R ) |
13 |
11 12
|
grpinvid |
|- ( R e. Grp -> ( ( invg ` R ) ` ( 0g ` R ) ) = ( 0g ` R ) ) |
14 |
3 10 13
|
3syl |
|- ( ph -> ( ( invg ` R ) ` ( 0g ` R ) ) = ( 0g ` R ) ) |
15 |
14
|
oveq1d |
|- ( ph -> ( ( ( invg ` R ) ` ( 0g ` R ) ) ( +g ` R ) ( 1r ` R ) ) = ( ( 0g ` R ) ( +g ` R ) ( 1r ` R ) ) ) |
16 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
17 |
3 10
|
syl |
|- ( ph -> R e. Grp ) |
18 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
19 |
2 18
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. B ) |
20 |
3 19
|
syl |
|- ( ph -> ( 1r ` R ) e. B ) |
21 |
2 16 11 17 20
|
grplidd |
|- ( ph -> ( ( 0g ` R ) ( +g ` R ) ( 1r ` R ) ) = ( 1r ` R ) ) |
22 |
15 21
|
eqtrd |
|- ( ph -> ( ( ( invg ` R ) ` ( 0g ` R ) ) ( +g ` R ) ( 1r ` R ) ) = ( 1r ` R ) ) |
23 |
5
|
2idllidld |
|- ( ph -> I e. ( LIdeal ` R ) ) |
24 |
2 18
|
pridln1 |
|- ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) -> -. ( 1r ` R ) e. I ) |
25 |
3 23 6 24
|
syl3anc |
|- ( ph -> -. ( 1r ` R ) e. I ) |
26 |
22 25
|
eqneltrd |
|- ( ph -> -. ( ( ( invg ` R ) ` ( 0g ` R ) ) ( +g ` R ) ( 1r ` R ) ) e. I ) |
27 |
3
|
adantr |
|- ( ( ph /\ ( 1r ` R ) ( R ~QG I ) ( 0g ` R ) ) -> R e. Ring ) |
28 |
|
lidlnsg |
|- ( ( R e. Ring /\ I e. ( LIdeal ` R ) ) -> I e. ( NrmSGrp ` R ) ) |
29 |
3 23 28
|
syl2anc |
|- ( ph -> I e. ( NrmSGrp ` R ) ) |
30 |
|
nsgsubg |
|- ( I e. ( NrmSGrp ` R ) -> I e. ( SubGrp ` R ) ) |
31 |
29 30
|
syl |
|- ( ph -> I e. ( SubGrp ` R ) ) |
32 |
2
|
subgss |
|- ( I e. ( SubGrp ` R ) -> I C_ B ) |
33 |
31 32
|
syl |
|- ( ph -> I C_ B ) |
34 |
33
|
adantr |
|- ( ( ph /\ ( 1r ` R ) ( R ~QG I ) ( 0g ` R ) ) -> I C_ B ) |
35 |
|
eqid |
|- ( R ~QG I ) = ( R ~QG I ) |
36 |
2 35
|
eqger |
|- ( I e. ( SubGrp ` R ) -> ( R ~QG I ) Er B ) |
37 |
31 36
|
syl |
|- ( ph -> ( R ~QG I ) Er B ) |
38 |
37
|
adantr |
|- ( ( ph /\ ( 1r ` R ) ( R ~QG I ) ( 0g ` R ) ) -> ( R ~QG I ) Er B ) |
39 |
|
simpr |
|- ( ( ph /\ ( 1r ` R ) ( R ~QG I ) ( 0g ` R ) ) -> ( 1r ` R ) ( R ~QG I ) ( 0g ` R ) ) |
40 |
38 39
|
ersym |
|- ( ( ph /\ ( 1r ` R ) ( R ~QG I ) ( 0g ` R ) ) -> ( 0g ` R ) ( R ~QG I ) ( 1r ` R ) ) |
41 |
2 12 16 35
|
eqgval |
|- ( ( R e. Ring /\ I C_ B ) -> ( ( 0g ` R ) ( R ~QG I ) ( 1r ` R ) <-> ( ( 0g ` R ) e. B /\ ( 1r ` R ) e. B /\ ( ( ( invg ` R ) ` ( 0g ` R ) ) ( +g ` R ) ( 1r ` R ) ) e. I ) ) ) |
42 |
41
|
biimpa |
|- ( ( ( R e. Ring /\ I C_ B ) /\ ( 0g ` R ) ( R ~QG I ) ( 1r ` R ) ) -> ( ( 0g ` R ) e. B /\ ( 1r ` R ) e. B /\ ( ( ( invg ` R ) ` ( 0g ` R ) ) ( +g ` R ) ( 1r ` R ) ) e. I ) ) |
43 |
42
|
simp3d |
|- ( ( ( R e. Ring /\ I C_ B ) /\ ( 0g ` R ) ( R ~QG I ) ( 1r ` R ) ) -> ( ( ( invg ` R ) ` ( 0g ` R ) ) ( +g ` R ) ( 1r ` R ) ) e. I ) |
44 |
27 34 40 43
|
syl21anc |
|- ( ( ph /\ ( 1r ` R ) ( R ~QG I ) ( 0g ` R ) ) -> ( ( ( invg ` R ) ` ( 0g ` R ) ) ( +g ` R ) ( 1r ` R ) ) e. I ) |
45 |
26 44
|
mtand |
|- ( ph -> -. ( 1r ` R ) ( R ~QG I ) ( 0g ` R ) ) |
46 |
37 20
|
erth |
|- ( ph -> ( ( 1r ` R ) ( R ~QG I ) ( 0g ` R ) <-> [ ( 1r ` R ) ] ( R ~QG I ) = [ ( 0g ` R ) ] ( R ~QG I ) ) ) |
47 |
45 46
|
mtbid |
|- ( ph -> -. [ ( 1r ` R ) ] ( R ~QG I ) = [ ( 0g ` R ) ] ( R ~QG I ) ) |
48 |
47
|
neqned |
|- ( ph -> [ ( 1r ` R ) ] ( R ~QG I ) =/= [ ( 0g ` R ) ] ( R ~QG I ) ) |
49 |
1 7 18
|
qus1 |
|- ( ( R e. Ring /\ I e. ( 2Ideal ` R ) ) -> ( Q e. Ring /\ [ ( 1r ` R ) ] ( R ~QG I ) = ( 1r ` Q ) ) ) |
50 |
3 5 49
|
syl2anc |
|- ( ph -> ( Q e. Ring /\ [ ( 1r ` R ) ] ( R ~QG I ) = ( 1r ` Q ) ) ) |
51 |
50
|
simprd |
|- ( ph -> [ ( 1r ` R ) ] ( R ~QG I ) = ( 1r ` Q ) ) |
52 |
1 11
|
qus0 |
|- ( I e. ( NrmSGrp ` R ) -> [ ( 0g ` R ) ] ( R ~QG I ) = ( 0g ` Q ) ) |
53 |
29 52
|
syl |
|- ( ph -> [ ( 0g ` R ) ] ( R ~QG I ) = ( 0g ` Q ) ) |
54 |
48 51 53
|
3netr3d |
|- ( ph -> ( 1r ` Q ) =/= ( 0g ` Q ) ) |
55 |
|
eqid |
|- ( 1r ` Q ) = ( 1r ` Q ) |
56 |
|
eqid |
|- ( 0g ` Q ) = ( 0g ` Q ) |
57 |
55 56
|
isnzr |
|- ( Q e. NzRing <-> ( Q e. Ring /\ ( 1r ` Q ) =/= ( 0g ` Q ) ) ) |
58 |
9 54 57
|
sylanbrc |
|- ( ph -> Q e. NzRing ) |