| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qsnzr.q |
|- Q = ( R /s ( R ~QG I ) ) |
| 2 |
|
qsnzr.1 |
|- B = ( Base ` R ) |
| 3 |
|
qsnzr.r |
|- ( ph -> R e. Ring ) |
| 4 |
|
qsnzr.z |
|- ( ph -> R e. NzRing ) |
| 5 |
|
qsnzr.i |
|- ( ph -> I e. ( 2Ideal ` R ) ) |
| 6 |
|
qsnzr.2 |
|- ( ph -> I =/= B ) |
| 7 |
|
eqid |
|- ( 2Ideal ` R ) = ( 2Ideal ` R ) |
| 8 |
1 7
|
qusring |
|- ( ( R e. Ring /\ I e. ( 2Ideal ` R ) ) -> Q e. Ring ) |
| 9 |
3 5 8
|
syl2anc |
|- ( ph -> Q e. Ring ) |
| 10 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
| 11 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 12 |
|
eqid |
|- ( invg ` R ) = ( invg ` R ) |
| 13 |
11 12
|
grpinvid |
|- ( R e. Grp -> ( ( invg ` R ) ` ( 0g ` R ) ) = ( 0g ` R ) ) |
| 14 |
3 10 13
|
3syl |
|- ( ph -> ( ( invg ` R ) ` ( 0g ` R ) ) = ( 0g ` R ) ) |
| 15 |
14
|
oveq1d |
|- ( ph -> ( ( ( invg ` R ) ` ( 0g ` R ) ) ( +g ` R ) ( 1r ` R ) ) = ( ( 0g ` R ) ( +g ` R ) ( 1r ` R ) ) ) |
| 16 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 17 |
3 10
|
syl |
|- ( ph -> R e. Grp ) |
| 18 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 19 |
2 18
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. B ) |
| 20 |
3 19
|
syl |
|- ( ph -> ( 1r ` R ) e. B ) |
| 21 |
2 16 11 17 20
|
grplidd |
|- ( ph -> ( ( 0g ` R ) ( +g ` R ) ( 1r ` R ) ) = ( 1r ` R ) ) |
| 22 |
15 21
|
eqtrd |
|- ( ph -> ( ( ( invg ` R ) ` ( 0g ` R ) ) ( +g ` R ) ( 1r ` R ) ) = ( 1r ` R ) ) |
| 23 |
5
|
2idllidld |
|- ( ph -> I e. ( LIdeal ` R ) ) |
| 24 |
2 18
|
pridln1 |
|- ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) -> -. ( 1r ` R ) e. I ) |
| 25 |
3 23 6 24
|
syl3anc |
|- ( ph -> -. ( 1r ` R ) e. I ) |
| 26 |
22 25
|
eqneltrd |
|- ( ph -> -. ( ( ( invg ` R ) ` ( 0g ` R ) ) ( +g ` R ) ( 1r ` R ) ) e. I ) |
| 27 |
3
|
adantr |
|- ( ( ph /\ ( 1r ` R ) ( R ~QG I ) ( 0g ` R ) ) -> R e. Ring ) |
| 28 |
|
lidlnsg |
|- ( ( R e. Ring /\ I e. ( LIdeal ` R ) ) -> I e. ( NrmSGrp ` R ) ) |
| 29 |
3 23 28
|
syl2anc |
|- ( ph -> I e. ( NrmSGrp ` R ) ) |
| 30 |
|
nsgsubg |
|- ( I e. ( NrmSGrp ` R ) -> I e. ( SubGrp ` R ) ) |
| 31 |
29 30
|
syl |
|- ( ph -> I e. ( SubGrp ` R ) ) |
| 32 |
2
|
subgss |
|- ( I e. ( SubGrp ` R ) -> I C_ B ) |
| 33 |
31 32
|
syl |
|- ( ph -> I C_ B ) |
| 34 |
33
|
adantr |
|- ( ( ph /\ ( 1r ` R ) ( R ~QG I ) ( 0g ` R ) ) -> I C_ B ) |
| 35 |
|
eqid |
|- ( R ~QG I ) = ( R ~QG I ) |
| 36 |
2 35
|
eqger |
|- ( I e. ( SubGrp ` R ) -> ( R ~QG I ) Er B ) |
| 37 |
31 36
|
syl |
|- ( ph -> ( R ~QG I ) Er B ) |
| 38 |
37
|
adantr |
|- ( ( ph /\ ( 1r ` R ) ( R ~QG I ) ( 0g ` R ) ) -> ( R ~QG I ) Er B ) |
| 39 |
|
simpr |
|- ( ( ph /\ ( 1r ` R ) ( R ~QG I ) ( 0g ` R ) ) -> ( 1r ` R ) ( R ~QG I ) ( 0g ` R ) ) |
| 40 |
38 39
|
ersym |
|- ( ( ph /\ ( 1r ` R ) ( R ~QG I ) ( 0g ` R ) ) -> ( 0g ` R ) ( R ~QG I ) ( 1r ` R ) ) |
| 41 |
2 12 16 35
|
eqgval |
|- ( ( R e. Ring /\ I C_ B ) -> ( ( 0g ` R ) ( R ~QG I ) ( 1r ` R ) <-> ( ( 0g ` R ) e. B /\ ( 1r ` R ) e. B /\ ( ( ( invg ` R ) ` ( 0g ` R ) ) ( +g ` R ) ( 1r ` R ) ) e. I ) ) ) |
| 42 |
41
|
biimpa |
|- ( ( ( R e. Ring /\ I C_ B ) /\ ( 0g ` R ) ( R ~QG I ) ( 1r ` R ) ) -> ( ( 0g ` R ) e. B /\ ( 1r ` R ) e. B /\ ( ( ( invg ` R ) ` ( 0g ` R ) ) ( +g ` R ) ( 1r ` R ) ) e. I ) ) |
| 43 |
42
|
simp3d |
|- ( ( ( R e. Ring /\ I C_ B ) /\ ( 0g ` R ) ( R ~QG I ) ( 1r ` R ) ) -> ( ( ( invg ` R ) ` ( 0g ` R ) ) ( +g ` R ) ( 1r ` R ) ) e. I ) |
| 44 |
27 34 40 43
|
syl21anc |
|- ( ( ph /\ ( 1r ` R ) ( R ~QG I ) ( 0g ` R ) ) -> ( ( ( invg ` R ) ` ( 0g ` R ) ) ( +g ` R ) ( 1r ` R ) ) e. I ) |
| 45 |
26 44
|
mtand |
|- ( ph -> -. ( 1r ` R ) ( R ~QG I ) ( 0g ` R ) ) |
| 46 |
37 20
|
erth |
|- ( ph -> ( ( 1r ` R ) ( R ~QG I ) ( 0g ` R ) <-> [ ( 1r ` R ) ] ( R ~QG I ) = [ ( 0g ` R ) ] ( R ~QG I ) ) ) |
| 47 |
45 46
|
mtbid |
|- ( ph -> -. [ ( 1r ` R ) ] ( R ~QG I ) = [ ( 0g ` R ) ] ( R ~QG I ) ) |
| 48 |
47
|
neqned |
|- ( ph -> [ ( 1r ` R ) ] ( R ~QG I ) =/= [ ( 0g ` R ) ] ( R ~QG I ) ) |
| 49 |
1 7 18
|
qus1 |
|- ( ( R e. Ring /\ I e. ( 2Ideal ` R ) ) -> ( Q e. Ring /\ [ ( 1r ` R ) ] ( R ~QG I ) = ( 1r ` Q ) ) ) |
| 50 |
3 5 49
|
syl2anc |
|- ( ph -> ( Q e. Ring /\ [ ( 1r ` R ) ] ( R ~QG I ) = ( 1r ` Q ) ) ) |
| 51 |
50
|
simprd |
|- ( ph -> [ ( 1r ` R ) ] ( R ~QG I ) = ( 1r ` Q ) ) |
| 52 |
1 11
|
qus0 |
|- ( I e. ( NrmSGrp ` R ) -> [ ( 0g ` R ) ] ( R ~QG I ) = ( 0g ` Q ) ) |
| 53 |
29 52
|
syl |
|- ( ph -> [ ( 0g ` R ) ] ( R ~QG I ) = ( 0g ` Q ) ) |
| 54 |
48 51 53
|
3netr3d |
|- ( ph -> ( 1r ` Q ) =/= ( 0g ` Q ) ) |
| 55 |
|
eqid |
|- ( 1r ` Q ) = ( 1r ` Q ) |
| 56 |
|
eqid |
|- ( 0g ` Q ) = ( 0g ` Q ) |
| 57 |
55 56
|
isnzr |
|- ( Q e. NzRing <-> ( Q e. Ring /\ ( 1r ` Q ) =/= ( 0g ` Q ) ) ) |
| 58 |
9 54 57
|
sylanbrc |
|- ( ph -> Q e. NzRing ) |