Metamath Proof Explorer


Theorem quscrng

Description: The quotient of a commutative ring by an ideal is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Hypotheses quscrng.u U = R / 𝑠 R ~ QG S
quscrng.i I = LIdeal R
Assertion quscrng R CRing S I U CRing

Proof

Step Hyp Ref Expression
1 quscrng.u U = R / 𝑠 R ~ QG S
2 quscrng.i I = LIdeal R
3 crngring R CRing R Ring
4 3 adantr R CRing S I R Ring
5 simpr R CRing S I S I
6 2 crng2idl R CRing I = 2Ideal R
7 6 adantr R CRing S I I = 2Ideal R
8 5 7 eleqtrd R CRing S I S 2Ideal R
9 eqid 2Ideal R = 2Ideal R
10 1 9 qusring R Ring S 2Ideal R U Ring
11 4 8 10 syl2anc R CRing S I U Ring
12 1 a1i R CRing S I U = R / 𝑠 R ~ QG S
13 eqidd R CRing S I Base R = Base R
14 ovexd R CRing S I R ~ QG S V
15 12 13 14 4 qusbas R CRing S I Base R / R ~ QG S = Base U
16 15 eleq2d R CRing S I x Base R / R ~ QG S x Base U
17 15 eleq2d R CRing S I y Base R / R ~ QG S y Base U
18 16 17 anbi12d R CRing S I x Base R / R ~ QG S y Base R / R ~ QG S x Base U y Base U
19 eqid Base R / R ~ QG S = Base R / R ~ QG S
20 oveq2 u R ~ QG S = y x U u R ~ QG S = x U y
21 oveq1 u R ~ QG S = y u R ~ QG S U x = y U x
22 20 21 eqeq12d u R ~ QG S = y x U u R ~ QG S = u R ~ QG S U x x U y = y U x
23 oveq1 v R ~ QG S = x v R ~ QG S U u R ~ QG S = x U u R ~ QG S
24 oveq2 v R ~ QG S = x u R ~ QG S U v R ~ QG S = u R ~ QG S U x
25 23 24 eqeq12d v R ~ QG S = x v R ~ QG S U u R ~ QG S = u R ~ QG S U v R ~ QG S x U u R ~ QG S = u R ~ QG S U x
26 eqid Base R = Base R
27 eqid R = R
28 26 27 crngcom R CRing u Base R v Base R u R v = v R u
29 28 ad4ant134 R CRing S I u Base R v Base R u R v = v R u
30 29 eceq1d R CRing S I u Base R v Base R u R v R ~ QG S = v R u R ~ QG S
31 2 lidlsubg R Ring S I S SubGrp R
32 3 31 sylan R CRing S I S SubGrp R
33 eqid R ~ QG S = R ~ QG S
34 26 33 eqger S SubGrp R R ~ QG S Er Base R
35 32 34 syl R CRing S I R ~ QG S Er Base R
36 26 33 9 27 2idlcpbl R Ring S 2Ideal R a R ~ QG S c b R ~ QG S d a R b R ~ QG S c R d
37 4 8 36 syl2anc R CRing S I a R ~ QG S c b R ~ QG S d a R b R ~ QG S c R d
38 26 27 ringcl R Ring c Base R d Base R c R d Base R
39 38 3expb R Ring c Base R d Base R c R d Base R
40 4 39 sylan R CRing S I c Base R d Base R c R d Base R
41 eqid U = U
42 12 13 35 4 37 40 27 41 qusmulval R CRing S I u Base R v Base R u R ~ QG S U v R ~ QG S = u R v R ~ QG S
43 42 3expa R CRing S I u Base R v Base R u R ~ QG S U v R ~ QG S = u R v R ~ QG S
44 12 13 35 4 37 40 27 41 qusmulval R CRing S I v Base R u Base R v R ~ QG S U u R ~ QG S = v R u R ~ QG S
45 44 3expa R CRing S I v Base R u Base R v R ~ QG S U u R ~ QG S = v R u R ~ QG S
46 45 an32s R CRing S I u Base R v Base R v R ~ QG S U u R ~ QG S = v R u R ~ QG S
47 30 43 46 3eqtr4rd R CRing S I u Base R v Base R v R ~ QG S U u R ~ QG S = u R ~ QG S U v R ~ QG S
48 19 25 47 ectocld R CRing S I u Base R x Base R / R ~ QG S x U u R ~ QG S = u R ~ QG S U x
49 48 an32s R CRing S I x Base R / R ~ QG S u Base R x U u R ~ QG S = u R ~ QG S U x
50 19 22 49 ectocld R CRing S I x Base R / R ~ QG S y Base R / R ~ QG S x U y = y U x
51 50 expl R CRing S I x Base R / R ~ QG S y Base R / R ~ QG S x U y = y U x
52 18 51 sylbird R CRing S I x Base U y Base U x U y = y U x
53 52 ralrimivv R CRing S I x Base U y Base U x U y = y U x
54 eqid Base U = Base U
55 54 41 iscrng2 U CRing U Ring x Base U y Base U x U y = y U x
56 11 53 55 sylanbrc R CRing S I U CRing