| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rhmpreimaprmidl.p | ⊢ 𝑃  =  ( PrmIdeal ‘ 𝑅 ) | 
						
							| 2 |  | rhmrcl1 | ⊢ ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  →  𝑅  ∈  Ring ) | 
						
							| 3 | 2 | ad2antlr | ⊢ ( ( ( 𝑆  ∈  CRing  ∧  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) )  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  →  𝑅  ∈  Ring ) | 
						
							| 4 |  | rhmrcl2 | ⊢ ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  →  𝑆  ∈  Ring ) | 
						
							| 5 |  | prmidlidl | ⊢ ( ( 𝑆  ∈  Ring  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  →  𝐽  ∈  ( LIdeal ‘ 𝑆 ) ) | 
						
							| 6 | 4 5 | sylan | ⊢ ( ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  →  𝐽  ∈  ( LIdeal ‘ 𝑆 ) ) | 
						
							| 7 |  | eqid | ⊢ ( LIdeal ‘ 𝑅 )  =  ( LIdeal ‘ 𝑅 ) | 
						
							| 8 | 7 | rhmpreimaidl | ⊢ ( ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  ∧  𝐽  ∈  ( LIdeal ‘ 𝑆 ) )  →  ( ◡ 𝐹  “  𝐽 )  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 9 | 6 8 | syldan | ⊢ ( ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  →  ( ◡ 𝐹  “  𝐽 )  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 10 | 9 | adantll | ⊢ ( ( ( 𝑆  ∈  CRing  ∧  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) )  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  →  ( ◡ 𝐹  “  𝐽 )  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 11 | 4 | adantr | ⊢ ( ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  →  𝑆  ∈  Ring ) | 
						
							| 12 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 13 |  | eqid | ⊢ ( .r ‘ 𝑆 )  =  ( .r ‘ 𝑆 ) | 
						
							| 14 | 12 13 | prmidlnr | ⊢ ( ( 𝑆  ∈  Ring  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  →  𝐽  ≠  ( Base ‘ 𝑆 ) ) | 
						
							| 15 | 4 14 | sylan | ⊢ ( ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  →  𝐽  ≠  ( Base ‘ 𝑆 ) ) | 
						
							| 16 |  | eqid | ⊢ ( 1r ‘ 𝑆 )  =  ( 1r ‘ 𝑆 ) | 
						
							| 17 | 12 16 | pridln1 | ⊢ ( ( 𝑆  ∈  Ring  ∧  𝐽  ∈  ( LIdeal ‘ 𝑆 )  ∧  𝐽  ≠  ( Base ‘ 𝑆 ) )  →  ¬  ( 1r ‘ 𝑆 )  ∈  𝐽 ) | 
						
							| 18 | 11 6 15 17 | syl3anc | ⊢ ( ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  →  ¬  ( 1r ‘ 𝑆 )  ∈  𝐽 ) | 
						
							| 19 |  | eqid | ⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 20 | 19 16 | rhm1 | ⊢ ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  →  ( 𝐹 ‘ ( 1r ‘ 𝑅 ) )  =  ( 1r ‘ 𝑆 ) ) | 
						
							| 21 | 20 | ad2antrr | ⊢ ( ( ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  ∧  ( ◡ 𝐹  “  𝐽 )  =  ( Base ‘ 𝑅 ) )  →  ( 𝐹 ‘ ( 1r ‘ 𝑅 ) )  =  ( 1r ‘ 𝑆 ) ) | 
						
							| 22 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 23 | 22 12 | rhmf | ⊢ ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  →  𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) | 
						
							| 24 | 23 | ffnd | ⊢ ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  →  𝐹  Fn  ( Base ‘ 𝑅 ) ) | 
						
							| 25 | 24 | ad2antrr | ⊢ ( ( ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  ∧  ( ◡ 𝐹  “  𝐽 )  =  ( Base ‘ 𝑅 ) )  →  𝐹  Fn  ( Base ‘ 𝑅 ) ) | 
						
							| 26 | 22 19 | ringidcl | ⊢ ( 𝑅  ∈  Ring  →  ( 1r ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 27 | 2 26 | syl | ⊢ ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  →  ( 1r ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 28 | 27 | ad2antrr | ⊢ ( ( ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  ∧  ( ◡ 𝐹  “  𝐽 )  =  ( Base ‘ 𝑅 ) )  →  ( 1r ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 29 |  | simpr | ⊢ ( ( ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  ∧  ( ◡ 𝐹  “  𝐽 )  =  ( Base ‘ 𝑅 ) )  →  ( ◡ 𝐹  “  𝐽 )  =  ( Base ‘ 𝑅 ) ) | 
						
							| 30 | 28 29 | eleqtrrd | ⊢ ( ( ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  ∧  ( ◡ 𝐹  “  𝐽 )  =  ( Base ‘ 𝑅 ) )  →  ( 1r ‘ 𝑅 )  ∈  ( ◡ 𝐹  “  𝐽 ) ) | 
						
							| 31 |  | elpreima | ⊢ ( 𝐹  Fn  ( Base ‘ 𝑅 )  →  ( ( 1r ‘ 𝑅 )  ∈  ( ◡ 𝐹  “  𝐽 )  ↔  ( ( 1r ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 )  ∧  ( 𝐹 ‘ ( 1r ‘ 𝑅 ) )  ∈  𝐽 ) ) ) | 
						
							| 32 | 31 | biimpa | ⊢ ( ( 𝐹  Fn  ( Base ‘ 𝑅 )  ∧  ( 1r ‘ 𝑅 )  ∈  ( ◡ 𝐹  “  𝐽 ) )  →  ( ( 1r ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 )  ∧  ( 𝐹 ‘ ( 1r ‘ 𝑅 ) )  ∈  𝐽 ) ) | 
						
							| 33 | 25 30 32 | syl2anc | ⊢ ( ( ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  ∧  ( ◡ 𝐹  “  𝐽 )  =  ( Base ‘ 𝑅 ) )  →  ( ( 1r ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 )  ∧  ( 𝐹 ‘ ( 1r ‘ 𝑅 ) )  ∈  𝐽 ) ) | 
						
							| 34 | 33 | simprd | ⊢ ( ( ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  ∧  ( ◡ 𝐹  “  𝐽 )  =  ( Base ‘ 𝑅 ) )  →  ( 𝐹 ‘ ( 1r ‘ 𝑅 ) )  ∈  𝐽 ) | 
						
							| 35 | 21 34 | eqeltrrd | ⊢ ( ( ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  ∧  ( ◡ 𝐹  “  𝐽 )  =  ( Base ‘ 𝑅 ) )  →  ( 1r ‘ 𝑆 )  ∈  𝐽 ) | 
						
							| 36 | 18 35 | mtand | ⊢ ( ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  →  ¬  ( ◡ 𝐹  “  𝐽 )  =  ( Base ‘ 𝑅 ) ) | 
						
							| 37 | 36 | neqned | ⊢ ( ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  →  ( ◡ 𝐹  “  𝐽 )  ≠  ( Base ‘ 𝑅 ) ) | 
						
							| 38 | 37 | adantll | ⊢ ( ( ( 𝑆  ∈  CRing  ∧  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) )  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  →  ( ◡ 𝐹  “  𝐽 )  ≠  ( Base ‘ 𝑅 ) ) | 
						
							| 39 |  | simp-5l | ⊢ ( ( ( ( ( ( 𝑆  ∈  CRing  ∧  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) )  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  ∧  𝑎  ∈  ( Base ‘ 𝑅 ) )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) )  ∧  ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 )  ∈  ( ◡ 𝐹  “  𝐽 ) )  →  𝑆  ∈  CRing ) | 
						
							| 40 |  | simp-4r | ⊢ ( ( ( ( ( ( 𝑆  ∈  CRing  ∧  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) )  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  ∧  𝑎  ∈  ( Base ‘ 𝑅 ) )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) )  ∧  ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 )  ∈  ( ◡ 𝐹  “  𝐽 ) )  →  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) ) | 
						
							| 41 |  | simp-5r | ⊢ ( ( ( ( ( ( 𝑆  ∈  CRing  ∧  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) )  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  ∧  𝑎  ∈  ( Base ‘ 𝑅 ) )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) )  ∧  ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 )  ∈  ( ◡ 𝐹  “  𝐽 ) )  →  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) ) | 
						
							| 42 | 41 23 | syl | ⊢ ( ( ( ( ( ( 𝑆  ∈  CRing  ∧  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) )  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  ∧  𝑎  ∈  ( Base ‘ 𝑅 ) )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) )  ∧  ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 )  ∈  ( ◡ 𝐹  “  𝐽 ) )  →  𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) | 
						
							| 43 |  | simpllr | ⊢ ( ( ( ( ( ( 𝑆  ∈  CRing  ∧  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) )  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  ∧  𝑎  ∈  ( Base ‘ 𝑅 ) )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) )  ∧  ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 )  ∈  ( ◡ 𝐹  “  𝐽 ) )  →  𝑎  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 44 | 42 43 | ffvelcdmd | ⊢ ( ( ( ( ( ( 𝑆  ∈  CRing  ∧  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) )  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  ∧  𝑎  ∈  ( Base ‘ 𝑅 ) )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) )  ∧  ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 )  ∈  ( ◡ 𝐹  “  𝐽 ) )  →  ( 𝐹 ‘ 𝑎 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 45 |  | simplr | ⊢ ( ( ( ( ( ( 𝑆  ∈  CRing  ∧  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) )  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  ∧  𝑎  ∈  ( Base ‘ 𝑅 ) )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) )  ∧  ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 )  ∈  ( ◡ 𝐹  “  𝐽 ) )  →  𝑏  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 46 | 42 45 | ffvelcdmd | ⊢ ( ( ( ( ( ( 𝑆  ∈  CRing  ∧  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) )  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  ∧  𝑎  ∈  ( Base ‘ 𝑅 ) )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) )  ∧  ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 )  ∈  ( ◡ 𝐹  “  𝐽 ) )  →  ( 𝐹 ‘ 𝑏 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 47 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 48 | 22 47 13 | rhmmul | ⊢ ( ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  ∧  𝑎  ∈  ( Base ‘ 𝑅 )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝐹 ‘ ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) )  =  ( ( 𝐹 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑏 ) ) ) | 
						
							| 49 | 41 43 45 48 | syl3anc | ⊢ ( ( ( ( ( ( 𝑆  ∈  CRing  ∧  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) )  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  ∧  𝑎  ∈  ( Base ‘ 𝑅 ) )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) )  ∧  ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 )  ∈  ( ◡ 𝐹  “  𝐽 ) )  →  ( 𝐹 ‘ ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) )  =  ( ( 𝐹 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑏 ) ) ) | 
						
							| 50 | 24 | ad5antlr | ⊢ ( ( ( ( ( ( 𝑆  ∈  CRing  ∧  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) )  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  ∧  𝑎  ∈  ( Base ‘ 𝑅 ) )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) )  ∧  ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 )  ∈  ( ◡ 𝐹  “  𝐽 ) )  →  𝐹  Fn  ( Base ‘ 𝑅 ) ) | 
						
							| 51 |  | simpr | ⊢ ( ( ( ( ( ( 𝑆  ∈  CRing  ∧  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) )  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  ∧  𝑎  ∈  ( Base ‘ 𝑅 ) )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) )  ∧  ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 )  ∈  ( ◡ 𝐹  “  𝐽 ) )  →  ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 )  ∈  ( ◡ 𝐹  “  𝐽 ) ) | 
						
							| 52 |  | elpreima | ⊢ ( 𝐹  Fn  ( Base ‘ 𝑅 )  →  ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 )  ∈  ( ◡ 𝐹  “  𝐽 )  ↔  ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 )  ∈  ( Base ‘ 𝑅 )  ∧  ( 𝐹 ‘ ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) )  ∈  𝐽 ) ) ) | 
						
							| 53 | 52 | simplbda | ⊢ ( ( 𝐹  Fn  ( Base ‘ 𝑅 )  ∧  ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 )  ∈  ( ◡ 𝐹  “  𝐽 ) )  →  ( 𝐹 ‘ ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) )  ∈  𝐽 ) | 
						
							| 54 | 50 51 53 | syl2anc | ⊢ ( ( ( ( ( ( 𝑆  ∈  CRing  ∧  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) )  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  ∧  𝑎  ∈  ( Base ‘ 𝑅 ) )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) )  ∧  ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 )  ∈  ( ◡ 𝐹  “  𝐽 ) )  →  ( 𝐹 ‘ ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) )  ∈  𝐽 ) | 
						
							| 55 | 49 54 | eqeltrrd | ⊢ ( ( ( ( ( ( 𝑆  ∈  CRing  ∧  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) )  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  ∧  𝑎  ∈  ( Base ‘ 𝑅 ) )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) )  ∧  ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 )  ∈  ( ◡ 𝐹  “  𝐽 ) )  →  ( ( 𝐹 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑏 ) )  ∈  𝐽 ) | 
						
							| 56 | 12 13 | prmidlc | ⊢ ( ( ( 𝑆  ∈  CRing  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  ∧  ( ( 𝐹 ‘ 𝑎 )  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ 𝑏 )  ∈  ( Base ‘ 𝑆 )  ∧  ( ( 𝐹 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑏 ) )  ∈  𝐽 ) )  →  ( ( 𝐹 ‘ 𝑎 )  ∈  𝐽  ∨  ( 𝐹 ‘ 𝑏 )  ∈  𝐽 ) ) | 
						
							| 57 | 39 40 44 46 55 56 | syl23anc | ⊢ ( ( ( ( ( ( 𝑆  ∈  CRing  ∧  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) )  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  ∧  𝑎  ∈  ( Base ‘ 𝑅 ) )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) )  ∧  ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 )  ∈  ( ◡ 𝐹  “  𝐽 ) )  →  ( ( 𝐹 ‘ 𝑎 )  ∈  𝐽  ∨  ( 𝐹 ‘ 𝑏 )  ∈  𝐽 ) ) | 
						
							| 58 | 50 | adantr | ⊢ ( ( ( ( ( ( ( 𝑆  ∈  CRing  ∧  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) )  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  ∧  𝑎  ∈  ( Base ‘ 𝑅 ) )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) )  ∧  ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 )  ∈  ( ◡ 𝐹  “  𝐽 ) )  ∧  ( 𝐹 ‘ 𝑎 )  ∈  𝐽 )  →  𝐹  Fn  ( Base ‘ 𝑅 ) ) | 
						
							| 59 | 43 | adantr | ⊢ ( ( ( ( ( ( ( 𝑆  ∈  CRing  ∧  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) )  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  ∧  𝑎  ∈  ( Base ‘ 𝑅 ) )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) )  ∧  ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 )  ∈  ( ◡ 𝐹  “  𝐽 ) )  ∧  ( 𝐹 ‘ 𝑎 )  ∈  𝐽 )  →  𝑎  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 60 |  | simpr | ⊢ ( ( ( ( ( ( ( 𝑆  ∈  CRing  ∧  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) )  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  ∧  𝑎  ∈  ( Base ‘ 𝑅 ) )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) )  ∧  ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 )  ∈  ( ◡ 𝐹  “  𝐽 ) )  ∧  ( 𝐹 ‘ 𝑎 )  ∈  𝐽 )  →  ( 𝐹 ‘ 𝑎 )  ∈  𝐽 ) | 
						
							| 61 | 58 59 60 | elpreimad | ⊢ ( ( ( ( ( ( ( 𝑆  ∈  CRing  ∧  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) )  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  ∧  𝑎  ∈  ( Base ‘ 𝑅 ) )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) )  ∧  ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 )  ∈  ( ◡ 𝐹  “  𝐽 ) )  ∧  ( 𝐹 ‘ 𝑎 )  ∈  𝐽 )  →  𝑎  ∈  ( ◡ 𝐹  “  𝐽 ) ) | 
						
							| 62 | 61 | ex | ⊢ ( ( ( ( ( ( 𝑆  ∈  CRing  ∧  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) )  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  ∧  𝑎  ∈  ( Base ‘ 𝑅 ) )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) )  ∧  ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 )  ∈  ( ◡ 𝐹  “  𝐽 ) )  →  ( ( 𝐹 ‘ 𝑎 )  ∈  𝐽  →  𝑎  ∈  ( ◡ 𝐹  “  𝐽 ) ) ) | 
						
							| 63 | 50 | adantr | ⊢ ( ( ( ( ( ( ( 𝑆  ∈  CRing  ∧  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) )  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  ∧  𝑎  ∈  ( Base ‘ 𝑅 ) )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) )  ∧  ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 )  ∈  ( ◡ 𝐹  “  𝐽 ) )  ∧  ( 𝐹 ‘ 𝑏 )  ∈  𝐽 )  →  𝐹  Fn  ( Base ‘ 𝑅 ) ) | 
						
							| 64 |  | simpllr | ⊢ ( ( ( ( ( ( ( 𝑆  ∈  CRing  ∧  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) )  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  ∧  𝑎  ∈  ( Base ‘ 𝑅 ) )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) )  ∧  ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 )  ∈  ( ◡ 𝐹  “  𝐽 ) )  ∧  ( 𝐹 ‘ 𝑏 )  ∈  𝐽 )  →  𝑏  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 65 |  | simpr | ⊢ ( ( ( ( ( ( ( 𝑆  ∈  CRing  ∧  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) )  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  ∧  𝑎  ∈  ( Base ‘ 𝑅 ) )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) )  ∧  ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 )  ∈  ( ◡ 𝐹  “  𝐽 ) )  ∧  ( 𝐹 ‘ 𝑏 )  ∈  𝐽 )  →  ( 𝐹 ‘ 𝑏 )  ∈  𝐽 ) | 
						
							| 66 | 63 64 65 | elpreimad | ⊢ ( ( ( ( ( ( ( 𝑆  ∈  CRing  ∧  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) )  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  ∧  𝑎  ∈  ( Base ‘ 𝑅 ) )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) )  ∧  ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 )  ∈  ( ◡ 𝐹  “  𝐽 ) )  ∧  ( 𝐹 ‘ 𝑏 )  ∈  𝐽 )  →  𝑏  ∈  ( ◡ 𝐹  “  𝐽 ) ) | 
						
							| 67 | 66 | ex | ⊢ ( ( ( ( ( ( 𝑆  ∈  CRing  ∧  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) )  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  ∧  𝑎  ∈  ( Base ‘ 𝑅 ) )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) )  ∧  ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 )  ∈  ( ◡ 𝐹  “  𝐽 ) )  →  ( ( 𝐹 ‘ 𝑏 )  ∈  𝐽  →  𝑏  ∈  ( ◡ 𝐹  “  𝐽 ) ) ) | 
						
							| 68 | 62 67 | orim12d | ⊢ ( ( ( ( ( ( 𝑆  ∈  CRing  ∧  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) )  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  ∧  𝑎  ∈  ( Base ‘ 𝑅 ) )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) )  ∧  ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 )  ∈  ( ◡ 𝐹  “  𝐽 ) )  →  ( ( ( 𝐹 ‘ 𝑎 )  ∈  𝐽  ∨  ( 𝐹 ‘ 𝑏 )  ∈  𝐽 )  →  ( 𝑎  ∈  ( ◡ 𝐹  “  𝐽 )  ∨  𝑏  ∈  ( ◡ 𝐹  “  𝐽 ) ) ) ) | 
						
							| 69 | 57 68 | mpd | ⊢ ( ( ( ( ( ( 𝑆  ∈  CRing  ∧  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) )  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  ∧  𝑎  ∈  ( Base ‘ 𝑅 ) )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) )  ∧  ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 )  ∈  ( ◡ 𝐹  “  𝐽 ) )  →  ( 𝑎  ∈  ( ◡ 𝐹  “  𝐽 )  ∨  𝑏  ∈  ( ◡ 𝐹  “  𝐽 ) ) ) | 
						
							| 70 | 69 | ex | ⊢ ( ( ( ( ( 𝑆  ∈  CRing  ∧  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) )  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  ∧  𝑎  ∈  ( Base ‘ 𝑅 ) )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) )  →  ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 )  ∈  ( ◡ 𝐹  “  𝐽 )  →  ( 𝑎  ∈  ( ◡ 𝐹  “  𝐽 )  ∨  𝑏  ∈  ( ◡ 𝐹  “  𝐽 ) ) ) ) | 
						
							| 71 | 70 | anasss | ⊢ ( ( ( ( 𝑆  ∈  CRing  ∧  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) )  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  ∧  ( 𝑎  ∈  ( Base ‘ 𝑅 )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) ) )  →  ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 )  ∈  ( ◡ 𝐹  “  𝐽 )  →  ( 𝑎  ∈  ( ◡ 𝐹  “  𝐽 )  ∨  𝑏  ∈  ( ◡ 𝐹  “  𝐽 ) ) ) ) | 
						
							| 72 | 71 | ralrimivva | ⊢ ( ( ( 𝑆  ∈  CRing  ∧  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) )  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  →  ∀ 𝑎  ∈  ( Base ‘ 𝑅 ) ∀ 𝑏  ∈  ( Base ‘ 𝑅 ) ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 )  ∈  ( ◡ 𝐹  “  𝐽 )  →  ( 𝑎  ∈  ( ◡ 𝐹  “  𝐽 )  ∨  𝑏  ∈  ( ◡ 𝐹  “  𝐽 ) ) ) ) | 
						
							| 73 | 22 47 | prmidl2 | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  ( ◡ 𝐹  “  𝐽 )  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  ( ( ◡ 𝐹  “  𝐽 )  ≠  ( Base ‘ 𝑅 )  ∧  ∀ 𝑎  ∈  ( Base ‘ 𝑅 ) ∀ 𝑏  ∈  ( Base ‘ 𝑅 ) ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 )  ∈  ( ◡ 𝐹  “  𝐽 )  →  ( 𝑎  ∈  ( ◡ 𝐹  “  𝐽 )  ∨  𝑏  ∈  ( ◡ 𝐹  “  𝐽 ) ) ) ) )  →  ( ◡ 𝐹  “  𝐽 )  ∈  ( PrmIdeal ‘ 𝑅 ) ) | 
						
							| 74 | 3 10 38 72 73 | syl22anc | ⊢ ( ( ( 𝑆  ∈  CRing  ∧  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) )  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  →  ( ◡ 𝐹  “  𝐽 )  ∈  ( PrmIdeal ‘ 𝑅 ) ) | 
						
							| 75 | 74 1 | eleqtrrdi | ⊢ ( ( ( 𝑆  ∈  CRing  ∧  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) )  ∧  𝐽  ∈  ( PrmIdeal ‘ 𝑆 ) )  →  ( ◡ 𝐹  “  𝐽 )  ∈  𝑃 ) |