Metamath Proof Explorer


Theorem minplyirredlem

Description: Lemma for minplyirred . (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypotheses ply1annig1p.o
|- O = ( E evalSub1 F )
ply1annig1p.p
|- P = ( Poly1 ` ( E |`s F ) )
ply1annig1p.b
|- B = ( Base ` E )
ply1annig1p.e
|- ( ph -> E e. Field )
ply1annig1p.f
|- ( ph -> F e. ( SubDRing ` E ) )
ply1annig1p.a
|- ( ph -> A e. B )
minplyirred.1
|- M = ( E minPoly F )
minplyirred.2
|- Z = ( 0g ` P )
minplyirred.3
|- ( ph -> ( M ` A ) =/= Z )
minplyirredlem.1
|- ( ph -> G e. ( Base ` P ) )
minplyirredlem.2
|- ( ph -> H e. ( Base ` P ) )
minplyirredlem.3
|- ( ph -> ( G ( .r ` P ) H ) = ( M ` A ) )
minplyirredlem.4
|- ( ph -> ( ( O ` G ) ` A ) = ( 0g ` E ) )
minplyirredlem.5
|- ( ph -> G =/= Z )
minplyirredlem.6
|- ( ph -> H =/= Z )
Assertion minplyirredlem
|- ( ph -> H e. ( Unit ` P ) )

Proof

Step Hyp Ref Expression
1 ply1annig1p.o
 |-  O = ( E evalSub1 F )
2 ply1annig1p.p
 |-  P = ( Poly1 ` ( E |`s F ) )
3 ply1annig1p.b
 |-  B = ( Base ` E )
4 ply1annig1p.e
 |-  ( ph -> E e. Field )
5 ply1annig1p.f
 |-  ( ph -> F e. ( SubDRing ` E ) )
6 ply1annig1p.a
 |-  ( ph -> A e. B )
7 minplyirred.1
 |-  M = ( E minPoly F )
8 minplyirred.2
 |-  Z = ( 0g ` P )
9 minplyirred.3
 |-  ( ph -> ( M ` A ) =/= Z )
10 minplyirredlem.1
 |-  ( ph -> G e. ( Base ` P ) )
11 minplyirredlem.2
 |-  ( ph -> H e. ( Base ` P ) )
12 minplyirredlem.3
 |-  ( ph -> ( G ( .r ` P ) H ) = ( M ` A ) )
13 minplyirredlem.4
 |-  ( ph -> ( ( O ` G ) ` A ) = ( 0g ` E ) )
14 minplyirredlem.5
 |-  ( ph -> G =/= Z )
15 minplyirredlem.6
 |-  ( ph -> H =/= Z )
16 eqid
 |-  ( E |`s F ) = ( E |`s F )
17 16 sdrgdrng
 |-  ( F e. ( SubDRing ` E ) -> ( E |`s F ) e. DivRing )
18 5 17 syl
 |-  ( ph -> ( E |`s F ) e. DivRing )
19 18 drngringd
 |-  ( ph -> ( E |`s F ) e. Ring )
20 eqid
 |-  ( deg1 ` ( E |`s F ) ) = ( deg1 ` ( E |`s F ) )
21 eqid
 |-  ( Base ` P ) = ( Base ` P )
22 20 2 8 21 deg1nn0cl
 |-  ( ( ( E |`s F ) e. Ring /\ G e. ( Base ` P ) /\ G =/= Z ) -> ( ( deg1 ` ( E |`s F ) ) ` G ) e. NN0 )
23 19 10 14 22 syl3anc
 |-  ( ph -> ( ( deg1 ` ( E |`s F ) ) ` G ) e. NN0 )
24 23 nn0red
 |-  ( ph -> ( ( deg1 ` ( E |`s F ) ) ` G ) e. RR )
25 20 2 8 21 deg1nn0cl
 |-  ( ( ( E |`s F ) e. Ring /\ H e. ( Base ` P ) /\ H =/= Z ) -> ( ( deg1 ` ( E |`s F ) ) ` H ) e. NN0 )
26 19 11 15 25 syl3anc
 |-  ( ph -> ( ( deg1 ` ( E |`s F ) ) ` H ) e. NN0 )
27 26 nn0red
 |-  ( ph -> ( ( deg1 ` ( E |`s F ) ) ` H ) e. RR )
28 eqid
 |-  ( RLReg ` ( E |`s F ) ) = ( RLReg ` ( E |`s F ) )
29 eqid
 |-  ( .r ` P ) = ( .r ` P )
30 fldsdrgfld
 |-  ( ( E e. Field /\ F e. ( SubDRing ` E ) ) -> ( E |`s F ) e. Field )
31 4 5 30 syl2anc
 |-  ( ph -> ( E |`s F ) e. Field )
32 fldidom
 |-  ( ( E |`s F ) e. Field -> ( E |`s F ) e. IDomn )
33 31 32 syl
 |-  ( ph -> ( E |`s F ) e. IDomn )
34 33 idomdomd
 |-  ( ph -> ( E |`s F ) e. Domn )
35 eqid
 |-  ( coe1 ` G ) = ( coe1 ` G )
36 20 2 8 21 28 35 deg1ldgdomn
 |-  ( ( ( E |`s F ) e. Domn /\ G e. ( Base ` P ) /\ G =/= Z ) -> ( ( coe1 ` G ) ` ( ( deg1 ` ( E |`s F ) ) ` G ) ) e. ( RLReg ` ( E |`s F ) ) )
37 34 10 14 36 syl3anc
 |-  ( ph -> ( ( coe1 ` G ) ` ( ( deg1 ` ( E |`s F ) ) ` G ) ) e. ( RLReg ` ( E |`s F ) ) )
38 20 2 28 21 29 8 19 10 14 37 11 15 deg1mul2
 |-  ( ph -> ( ( deg1 ` ( E |`s F ) ) ` ( G ( .r ` P ) H ) ) = ( ( ( deg1 ` ( E |`s F ) ) ` G ) + ( ( deg1 ` ( E |`s F ) ) ` H ) ) )
39 eqid
 |-  ( 0g ` E ) = ( 0g ` E )
40 eqid
 |-  { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } = { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) }
41 eqid
 |-  ( RSpan ` P ) = ( RSpan ` P )
42 eqid
 |-  ( idlGen1p ` ( E |`s F ) ) = ( idlGen1p ` ( E |`s F ) )
43 1 2 3 4 5 6 39 40 41 42 7 minplyval
 |-  ( ph -> ( M ` A ) = ( ( idlGen1p ` ( E |`s F ) ) ` { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } ) )
44 12 43 eqtrd
 |-  ( ph -> ( G ( .r ` P ) H ) = ( ( idlGen1p ` ( E |`s F ) ) ` { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } ) )
45 44 fveq2d
 |-  ( ph -> ( ( deg1 ` ( E |`s F ) ) ` ( G ( .r ` P ) H ) ) = ( ( deg1 ` ( E |`s F ) ) ` ( ( idlGen1p ` ( E |`s F ) ) ` { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } ) ) )
46 4 fldcrngd
 |-  ( ph -> E e. CRing )
47 sdrgsubrg
 |-  ( F e. ( SubDRing ` E ) -> F e. ( SubRing ` E ) )
48 5 47 syl
 |-  ( ph -> F e. ( SubRing ` E ) )
49 1 2 3 46 48 6 39 40 ply1annidl
 |-  ( ph -> { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } e. ( LIdeal ` P ) )
50 fveq2
 |-  ( q = G -> ( O ` q ) = ( O ` G ) )
51 50 fveq1d
 |-  ( q = G -> ( ( O ` q ) ` A ) = ( ( O ` G ) ` A ) )
52 51 eqeq1d
 |-  ( q = G -> ( ( ( O ` q ) ` A ) = ( 0g ` E ) <-> ( ( O ` G ) ` A ) = ( 0g ` E ) ) )
53 1 2 21 46 48 evls1dm
 |-  ( ph -> dom O = ( Base ` P ) )
54 10 53 eleqtrrd
 |-  ( ph -> G e. dom O )
55 52 54 13 elrabd
 |-  ( ph -> G e. { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } )
56 2 42 21 18 49 20 8 55 14 ig1pmindeg
 |-  ( ph -> ( ( deg1 ` ( E |`s F ) ) ` ( ( idlGen1p ` ( E |`s F ) ) ` { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } ) ) <_ ( ( deg1 ` ( E |`s F ) ) ` G ) )
57 45 56 eqbrtrd
 |-  ( ph -> ( ( deg1 ` ( E |`s F ) ) ` ( G ( .r ` P ) H ) ) <_ ( ( deg1 ` ( E |`s F ) ) ` G ) )
58 38 57 eqbrtrrd
 |-  ( ph -> ( ( ( deg1 ` ( E |`s F ) ) ` G ) + ( ( deg1 ` ( E |`s F ) ) ` H ) ) <_ ( ( deg1 ` ( E |`s F ) ) ` G ) )
59 leaddle0
 |-  ( ( ( ( deg1 ` ( E |`s F ) ) ` G ) e. RR /\ ( ( deg1 ` ( E |`s F ) ) ` H ) e. RR ) -> ( ( ( ( deg1 ` ( E |`s F ) ) ` G ) + ( ( deg1 ` ( E |`s F ) ) ` H ) ) <_ ( ( deg1 ` ( E |`s F ) ) ` G ) <-> ( ( deg1 ` ( E |`s F ) ) ` H ) <_ 0 ) )
60 59 biimpa
 |-  ( ( ( ( ( deg1 ` ( E |`s F ) ) ` G ) e. RR /\ ( ( deg1 ` ( E |`s F ) ) ` H ) e. RR ) /\ ( ( ( deg1 ` ( E |`s F ) ) ` G ) + ( ( deg1 ` ( E |`s F ) ) ` H ) ) <_ ( ( deg1 ` ( E |`s F ) ) ` G ) ) -> ( ( deg1 ` ( E |`s F ) ) ` H ) <_ 0 )
61 24 27 58 60 syl21anc
 |-  ( ph -> ( ( deg1 ` ( E |`s F ) ) ` H ) <_ 0 )
62 eqid
 |-  ( algSc ` P ) = ( algSc ` P )
63 20 2 21 62 deg1le0
 |-  ( ( ( E |`s F ) e. Ring /\ H e. ( Base ` P ) ) -> ( ( ( deg1 ` ( E |`s F ) ) ` H ) <_ 0 <-> H = ( ( algSc ` P ) ` ( ( coe1 ` H ) ` 0 ) ) ) )
64 63 biimpa
 |-  ( ( ( ( E |`s F ) e. Ring /\ H e. ( Base ` P ) ) /\ ( ( deg1 ` ( E |`s F ) ) ` H ) <_ 0 ) -> H = ( ( algSc ` P ) ` ( ( coe1 ` H ) ` 0 ) ) )
65 19 11 61 64 syl21anc
 |-  ( ph -> H = ( ( algSc ` P ) ` ( ( coe1 ` H ) ` 0 ) ) )
66 eqid
 |-  ( Base ` ( E |`s F ) ) = ( Base ` ( E |`s F ) )
67 eqid
 |-  ( 0g ` ( E |`s F ) ) = ( 0g ` ( E |`s F ) )
68 0nn0
 |-  0 e. NN0
69 eqid
 |-  ( coe1 ` H ) = ( coe1 ` H )
70 69 21 2 66 coe1fvalcl
 |-  ( ( H e. ( Base ` P ) /\ 0 e. NN0 ) -> ( ( coe1 ` H ) ` 0 ) e. ( Base ` ( E |`s F ) ) )
71 11 68 70 sylancl
 |-  ( ph -> ( ( coe1 ` H ) ` 0 ) e. ( Base ` ( E |`s F ) ) )
72 20 2 67 21 8 19 11 61 deg1le0eq0
 |-  ( ph -> ( H = Z <-> ( ( coe1 ` H ) ` 0 ) = ( 0g ` ( E |`s F ) ) ) )
73 72 necon3bid
 |-  ( ph -> ( H =/= Z <-> ( ( coe1 ` H ) ` 0 ) =/= ( 0g ` ( E |`s F ) ) ) )
74 15 73 mpbid
 |-  ( ph -> ( ( coe1 ` H ) ` 0 ) =/= ( 0g ` ( E |`s F ) ) )
75 2 62 66 67 31 71 74 ply1asclunit
 |-  ( ph -> ( ( algSc ` P ) ` ( ( coe1 ` H ) ` 0 ) ) e. ( Unit ` P ) )
76 65 75 eqeltrd
 |-  ( ph -> H e. ( Unit ` P ) )