Step |
Hyp |
Ref |
Expression |
1 |
|
ply1annig1p.o |
|- O = ( E evalSub1 F ) |
2 |
|
ply1annig1p.p |
|- P = ( Poly1 ` ( E |`s F ) ) |
3 |
|
ply1annig1p.b |
|- B = ( Base ` E ) |
4 |
|
ply1annig1p.e |
|- ( ph -> E e. Field ) |
5 |
|
ply1annig1p.f |
|- ( ph -> F e. ( SubDRing ` E ) ) |
6 |
|
ply1annig1p.a |
|- ( ph -> A e. B ) |
7 |
|
minplyirred.1 |
|- M = ( E minPoly F ) |
8 |
|
minplyirred.2 |
|- Z = ( 0g ` P ) |
9 |
|
minplyirred.3 |
|- ( ph -> ( M ` A ) =/= Z ) |
10 |
|
minplyirredlem.1 |
|- ( ph -> G e. ( Base ` P ) ) |
11 |
|
minplyirredlem.2 |
|- ( ph -> H e. ( Base ` P ) ) |
12 |
|
minplyirredlem.3 |
|- ( ph -> ( G ( .r ` P ) H ) = ( M ` A ) ) |
13 |
|
minplyirredlem.4 |
|- ( ph -> ( ( O ` G ) ` A ) = ( 0g ` E ) ) |
14 |
|
minplyirredlem.5 |
|- ( ph -> G =/= Z ) |
15 |
|
minplyirredlem.6 |
|- ( ph -> H =/= Z ) |
16 |
|
eqid |
|- ( E |`s F ) = ( E |`s F ) |
17 |
16
|
sdrgdrng |
|- ( F e. ( SubDRing ` E ) -> ( E |`s F ) e. DivRing ) |
18 |
5 17
|
syl |
|- ( ph -> ( E |`s F ) e. DivRing ) |
19 |
18
|
drngringd |
|- ( ph -> ( E |`s F ) e. Ring ) |
20 |
|
eqid |
|- ( deg1 ` ( E |`s F ) ) = ( deg1 ` ( E |`s F ) ) |
21 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
22 |
20 2 8 21
|
deg1nn0cl |
|- ( ( ( E |`s F ) e. Ring /\ G e. ( Base ` P ) /\ G =/= Z ) -> ( ( deg1 ` ( E |`s F ) ) ` G ) e. NN0 ) |
23 |
19 10 14 22
|
syl3anc |
|- ( ph -> ( ( deg1 ` ( E |`s F ) ) ` G ) e. NN0 ) |
24 |
23
|
nn0red |
|- ( ph -> ( ( deg1 ` ( E |`s F ) ) ` G ) e. RR ) |
25 |
20 2 8 21
|
deg1nn0cl |
|- ( ( ( E |`s F ) e. Ring /\ H e. ( Base ` P ) /\ H =/= Z ) -> ( ( deg1 ` ( E |`s F ) ) ` H ) e. NN0 ) |
26 |
19 11 15 25
|
syl3anc |
|- ( ph -> ( ( deg1 ` ( E |`s F ) ) ` H ) e. NN0 ) |
27 |
26
|
nn0red |
|- ( ph -> ( ( deg1 ` ( E |`s F ) ) ` H ) e. RR ) |
28 |
|
eqid |
|- ( RLReg ` ( E |`s F ) ) = ( RLReg ` ( E |`s F ) ) |
29 |
|
eqid |
|- ( .r ` P ) = ( .r ` P ) |
30 |
|
fldsdrgfld |
|- ( ( E e. Field /\ F e. ( SubDRing ` E ) ) -> ( E |`s F ) e. Field ) |
31 |
4 5 30
|
syl2anc |
|- ( ph -> ( E |`s F ) e. Field ) |
32 |
|
fldidom |
|- ( ( E |`s F ) e. Field -> ( E |`s F ) e. IDomn ) |
33 |
31 32
|
syl |
|- ( ph -> ( E |`s F ) e. IDomn ) |
34 |
33
|
idomdomd |
|- ( ph -> ( E |`s F ) e. Domn ) |
35 |
|
eqid |
|- ( coe1 ` G ) = ( coe1 ` G ) |
36 |
20 2 8 21 28 35
|
deg1ldgdomn |
|- ( ( ( E |`s F ) e. Domn /\ G e. ( Base ` P ) /\ G =/= Z ) -> ( ( coe1 ` G ) ` ( ( deg1 ` ( E |`s F ) ) ` G ) ) e. ( RLReg ` ( E |`s F ) ) ) |
37 |
34 10 14 36
|
syl3anc |
|- ( ph -> ( ( coe1 ` G ) ` ( ( deg1 ` ( E |`s F ) ) ` G ) ) e. ( RLReg ` ( E |`s F ) ) ) |
38 |
20 2 28 21 29 8 19 10 14 37 11 15
|
deg1mul2 |
|- ( ph -> ( ( deg1 ` ( E |`s F ) ) ` ( G ( .r ` P ) H ) ) = ( ( ( deg1 ` ( E |`s F ) ) ` G ) + ( ( deg1 ` ( E |`s F ) ) ` H ) ) ) |
39 |
|
eqid |
|- ( 0g ` E ) = ( 0g ` E ) |
40 |
|
eqid |
|- { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } = { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } |
41 |
|
eqid |
|- ( RSpan ` P ) = ( RSpan ` P ) |
42 |
|
eqid |
|- ( idlGen1p ` ( E |`s F ) ) = ( idlGen1p ` ( E |`s F ) ) |
43 |
1 2 3 4 5 6 39 40 41 42 7
|
minplyval |
|- ( ph -> ( M ` A ) = ( ( idlGen1p ` ( E |`s F ) ) ` { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } ) ) |
44 |
12 43
|
eqtrd |
|- ( ph -> ( G ( .r ` P ) H ) = ( ( idlGen1p ` ( E |`s F ) ) ` { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } ) ) |
45 |
44
|
fveq2d |
|- ( ph -> ( ( deg1 ` ( E |`s F ) ) ` ( G ( .r ` P ) H ) ) = ( ( deg1 ` ( E |`s F ) ) ` ( ( idlGen1p ` ( E |`s F ) ) ` { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } ) ) ) |
46 |
4
|
fldcrngd |
|- ( ph -> E e. CRing ) |
47 |
|
sdrgsubrg |
|- ( F e. ( SubDRing ` E ) -> F e. ( SubRing ` E ) ) |
48 |
5 47
|
syl |
|- ( ph -> F e. ( SubRing ` E ) ) |
49 |
1 2 3 46 48 6 39 40
|
ply1annidl |
|- ( ph -> { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } e. ( LIdeal ` P ) ) |
50 |
|
fveq2 |
|- ( q = G -> ( O ` q ) = ( O ` G ) ) |
51 |
50
|
fveq1d |
|- ( q = G -> ( ( O ` q ) ` A ) = ( ( O ` G ) ` A ) ) |
52 |
51
|
eqeq1d |
|- ( q = G -> ( ( ( O ` q ) ` A ) = ( 0g ` E ) <-> ( ( O ` G ) ` A ) = ( 0g ` E ) ) ) |
53 |
1 2 21 46 48
|
evls1dm |
|- ( ph -> dom O = ( Base ` P ) ) |
54 |
10 53
|
eleqtrrd |
|- ( ph -> G e. dom O ) |
55 |
52 54 13
|
elrabd |
|- ( ph -> G e. { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } ) |
56 |
2 42 21 18 49 20 8 55 14
|
ig1pmindeg |
|- ( ph -> ( ( deg1 ` ( E |`s F ) ) ` ( ( idlGen1p ` ( E |`s F ) ) ` { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } ) ) <_ ( ( deg1 ` ( E |`s F ) ) ` G ) ) |
57 |
45 56
|
eqbrtrd |
|- ( ph -> ( ( deg1 ` ( E |`s F ) ) ` ( G ( .r ` P ) H ) ) <_ ( ( deg1 ` ( E |`s F ) ) ` G ) ) |
58 |
38 57
|
eqbrtrrd |
|- ( ph -> ( ( ( deg1 ` ( E |`s F ) ) ` G ) + ( ( deg1 ` ( E |`s F ) ) ` H ) ) <_ ( ( deg1 ` ( E |`s F ) ) ` G ) ) |
59 |
|
leaddle0 |
|- ( ( ( ( deg1 ` ( E |`s F ) ) ` G ) e. RR /\ ( ( deg1 ` ( E |`s F ) ) ` H ) e. RR ) -> ( ( ( ( deg1 ` ( E |`s F ) ) ` G ) + ( ( deg1 ` ( E |`s F ) ) ` H ) ) <_ ( ( deg1 ` ( E |`s F ) ) ` G ) <-> ( ( deg1 ` ( E |`s F ) ) ` H ) <_ 0 ) ) |
60 |
59
|
biimpa |
|- ( ( ( ( ( deg1 ` ( E |`s F ) ) ` G ) e. RR /\ ( ( deg1 ` ( E |`s F ) ) ` H ) e. RR ) /\ ( ( ( deg1 ` ( E |`s F ) ) ` G ) + ( ( deg1 ` ( E |`s F ) ) ` H ) ) <_ ( ( deg1 ` ( E |`s F ) ) ` G ) ) -> ( ( deg1 ` ( E |`s F ) ) ` H ) <_ 0 ) |
61 |
24 27 58 60
|
syl21anc |
|- ( ph -> ( ( deg1 ` ( E |`s F ) ) ` H ) <_ 0 ) |
62 |
|
eqid |
|- ( algSc ` P ) = ( algSc ` P ) |
63 |
20 2 21 62
|
deg1le0 |
|- ( ( ( E |`s F ) e. Ring /\ H e. ( Base ` P ) ) -> ( ( ( deg1 ` ( E |`s F ) ) ` H ) <_ 0 <-> H = ( ( algSc ` P ) ` ( ( coe1 ` H ) ` 0 ) ) ) ) |
64 |
63
|
biimpa |
|- ( ( ( ( E |`s F ) e. Ring /\ H e. ( Base ` P ) ) /\ ( ( deg1 ` ( E |`s F ) ) ` H ) <_ 0 ) -> H = ( ( algSc ` P ) ` ( ( coe1 ` H ) ` 0 ) ) ) |
65 |
19 11 61 64
|
syl21anc |
|- ( ph -> H = ( ( algSc ` P ) ` ( ( coe1 ` H ) ` 0 ) ) ) |
66 |
|
eqid |
|- ( Base ` ( E |`s F ) ) = ( Base ` ( E |`s F ) ) |
67 |
|
eqid |
|- ( 0g ` ( E |`s F ) ) = ( 0g ` ( E |`s F ) ) |
68 |
|
0nn0 |
|- 0 e. NN0 |
69 |
|
eqid |
|- ( coe1 ` H ) = ( coe1 ` H ) |
70 |
69 21 2 66
|
coe1fvalcl |
|- ( ( H e. ( Base ` P ) /\ 0 e. NN0 ) -> ( ( coe1 ` H ) ` 0 ) e. ( Base ` ( E |`s F ) ) ) |
71 |
11 68 70
|
sylancl |
|- ( ph -> ( ( coe1 ` H ) ` 0 ) e. ( Base ` ( E |`s F ) ) ) |
72 |
20 2 67 21 8 19 11 61
|
deg1le0eq0 |
|- ( ph -> ( H = Z <-> ( ( coe1 ` H ) ` 0 ) = ( 0g ` ( E |`s F ) ) ) ) |
73 |
72
|
necon3bid |
|- ( ph -> ( H =/= Z <-> ( ( coe1 ` H ) ` 0 ) =/= ( 0g ` ( E |`s F ) ) ) ) |
74 |
15 73
|
mpbid |
|- ( ph -> ( ( coe1 ` H ) ` 0 ) =/= ( 0g ` ( E |`s F ) ) ) |
75 |
2 62 66 67 31 71 74
|
ply1asclunit |
|- ( ph -> ( ( algSc ` P ) ` ( ( coe1 ` H ) ` 0 ) ) e. ( Unit ` P ) ) |
76 |
65 75
|
eqeltrd |
|- ( ph -> H e. ( Unit ` P ) ) |