Metamath Proof Explorer


Theorem ply1annidl

Description: The set Q of polynomials annihilating an element A forms an ideal. (Contributed by Thierry Arnoux, 9-Feb-2025)

Ref Expression
Hypotheses ply1annidl.o
|- O = ( R evalSub1 S )
ply1annidl.p
|- P = ( Poly1 ` ( R |`s S ) )
ply1annidl.b
|- B = ( Base ` R )
ply1annidl.r
|- ( ph -> R e. CRing )
ply1annidl.s
|- ( ph -> S e. ( SubRing ` R ) )
ply1annidl.a
|- ( ph -> A e. B )
ply1annidl.0
|- .0. = ( 0g ` R )
ply1annidl.q
|- Q = { q e. dom O | ( ( O ` q ) ` A ) = .0. }
Assertion ply1annidl
|- ( ph -> Q e. ( LIdeal ` P ) )

Proof

Step Hyp Ref Expression
1 ply1annidl.o
 |-  O = ( R evalSub1 S )
2 ply1annidl.p
 |-  P = ( Poly1 ` ( R |`s S ) )
3 ply1annidl.b
 |-  B = ( Base ` R )
4 ply1annidl.r
 |-  ( ph -> R e. CRing )
5 ply1annidl.s
 |-  ( ph -> S e. ( SubRing ` R ) )
6 ply1annidl.a
 |-  ( ph -> A e. B )
7 ply1annidl.0
 |-  .0. = ( 0g ` R )
8 ply1annidl.q
 |-  Q = { q e. dom O | ( ( O ` q ) ` A ) = .0. }
9 eqid
 |-  ( p e. ( Base ` P ) |-> ( ( O ` p ) ` A ) ) = ( p e. ( Base ` P ) |-> ( ( O ` p ) ` A ) )
10 1 2 3 4 5 6 7 8 9 ply1annidllem
 |-  ( ph -> Q = ( `' ( p e. ( Base ` P ) |-> ( ( O ` p ) ` A ) ) " { .0. } ) )
11 eqid
 |-  ( Base ` P ) = ( Base ` P )
12 1 2 3 11 4 5 6 9 evls1maprhm
 |-  ( ph -> ( p e. ( Base ` P ) |-> ( ( O ` p ) ` A ) ) e. ( P RingHom R ) )
13 4 crngringd
 |-  ( ph -> R e. Ring )
14 eqid
 |-  ( LIdeal ` R ) = ( LIdeal ` R )
15 14 7 lidl0
 |-  ( R e. Ring -> { .0. } e. ( LIdeal ` R ) )
16 13 15 syl
 |-  ( ph -> { .0. } e. ( LIdeal ` R ) )
17 eqid
 |-  ( LIdeal ` P ) = ( LIdeal ` P )
18 17 rhmpreimaidl
 |-  ( ( ( p e. ( Base ` P ) |-> ( ( O ` p ) ` A ) ) e. ( P RingHom R ) /\ { .0. } e. ( LIdeal ` R ) ) -> ( `' ( p e. ( Base ` P ) |-> ( ( O ` p ) ` A ) ) " { .0. } ) e. ( LIdeal ` P ) )
19 12 16 18 syl2anc
 |-  ( ph -> ( `' ( p e. ( Base ` P ) |-> ( ( O ` p ) ` A ) ) " { .0. } ) e. ( LIdeal ` P ) )
20 10 19 eqeltrd
 |-  ( ph -> Q e. ( LIdeal ` P ) )