Step |
Hyp |
Ref |
Expression |
1 |
|
evls1maprhm.q |
|- O = ( R evalSub1 S ) |
2 |
|
evls1maprhm.p |
|- P = ( Poly1 ` ( R |`s S ) ) |
3 |
|
evls1maprhm.b |
|- B = ( Base ` R ) |
4 |
|
evls1maprhm.u |
|- U = ( Base ` P ) |
5 |
|
evls1maprhm.r |
|- ( ph -> R e. CRing ) |
6 |
|
evls1maprhm.s |
|- ( ph -> S e. ( SubRing ` R ) ) |
7 |
|
evls1maprhm.y |
|- ( ph -> X e. B ) |
8 |
|
evls1maprhm.f |
|- F = ( p e. U |-> ( ( O ` p ) ` X ) ) |
9 |
|
eqid |
|- ( 1r ` P ) = ( 1r ` P ) |
10 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
11 |
|
eqid |
|- ( .r ` P ) = ( .r ` P ) |
12 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
13 |
|
eqid |
|- ( R |`s S ) = ( R |`s S ) |
14 |
13
|
subrgcrng |
|- ( ( R e. CRing /\ S e. ( SubRing ` R ) ) -> ( R |`s S ) e. CRing ) |
15 |
5 6 14
|
syl2anc |
|- ( ph -> ( R |`s S ) e. CRing ) |
16 |
2
|
ply1crng |
|- ( ( R |`s S ) e. CRing -> P e. CRing ) |
17 |
15 16
|
syl |
|- ( ph -> P e. CRing ) |
18 |
17
|
crngringd |
|- ( ph -> P e. Ring ) |
19 |
5
|
crngringd |
|- ( ph -> R e. Ring ) |
20 |
|
fveq2 |
|- ( p = ( 1r ` P ) -> ( O ` p ) = ( O ` ( 1r ` P ) ) ) |
21 |
20
|
fveq1d |
|- ( p = ( 1r ` P ) -> ( ( O ` p ) ` X ) = ( ( O ` ( 1r ` P ) ) ` X ) ) |
22 |
4 9
|
ringidcl |
|- ( P e. Ring -> ( 1r ` P ) e. U ) |
23 |
18 22
|
syl |
|- ( ph -> ( 1r ` P ) e. U ) |
24 |
|
fvexd |
|- ( ph -> ( ( O ` ( 1r ` P ) ) ` X ) e. _V ) |
25 |
8 21 23 24
|
fvmptd3 |
|- ( ph -> ( F ` ( 1r ` P ) ) = ( ( O ` ( 1r ` P ) ) ` X ) ) |
26 |
13 10
|
subrg1 |
|- ( S e. ( SubRing ` R ) -> ( 1r ` R ) = ( 1r ` ( R |`s S ) ) ) |
27 |
6 26
|
syl |
|- ( ph -> ( 1r ` R ) = ( 1r ` ( R |`s S ) ) ) |
28 |
27
|
fveq2d |
|- ( ph -> ( ( algSc ` P ) ` ( 1r ` R ) ) = ( ( algSc ` P ) ` ( 1r ` ( R |`s S ) ) ) ) |
29 |
15
|
crngringd |
|- ( ph -> ( R |`s S ) e. Ring ) |
30 |
|
eqid |
|- ( algSc ` P ) = ( algSc ` P ) |
31 |
|
eqid |
|- ( 1r ` ( R |`s S ) ) = ( 1r ` ( R |`s S ) ) |
32 |
2 30 31 9
|
ply1scl1 |
|- ( ( R |`s S ) e. Ring -> ( ( algSc ` P ) ` ( 1r ` ( R |`s S ) ) ) = ( 1r ` P ) ) |
33 |
29 32
|
syl |
|- ( ph -> ( ( algSc ` P ) ` ( 1r ` ( R |`s S ) ) ) = ( 1r ` P ) ) |
34 |
28 33
|
eqtr2d |
|- ( ph -> ( 1r ` P ) = ( ( algSc ` P ) ` ( 1r ` R ) ) ) |
35 |
34
|
fveq2d |
|- ( ph -> ( O ` ( 1r ` P ) ) = ( O ` ( ( algSc ` P ) ` ( 1r ` R ) ) ) ) |
36 |
35
|
fveq1d |
|- ( ph -> ( ( O ` ( 1r ` P ) ) ` X ) = ( ( O ` ( ( algSc ` P ) ` ( 1r ` R ) ) ) ` X ) ) |
37 |
10
|
subrg1cl |
|- ( S e. ( SubRing ` R ) -> ( 1r ` R ) e. S ) |
38 |
6 37
|
syl |
|- ( ph -> ( 1r ` R ) e. S ) |
39 |
1 2 13 3 30 5 6 38 7
|
evls1scafv |
|- ( ph -> ( ( O ` ( ( algSc ` P ) ` ( 1r ` R ) ) ) ` X ) = ( 1r ` R ) ) |
40 |
25 36 39
|
3eqtrd |
|- ( ph -> ( F ` ( 1r ` P ) ) = ( 1r ` R ) ) |
41 |
5
|
adantr |
|- ( ( ph /\ ( q e. U /\ r e. U ) ) -> R e. CRing ) |
42 |
6
|
adantr |
|- ( ( ph /\ ( q e. U /\ r e. U ) ) -> S e. ( SubRing ` R ) ) |
43 |
|
simprl |
|- ( ( ph /\ ( q e. U /\ r e. U ) ) -> q e. U ) |
44 |
|
simprr |
|- ( ( ph /\ ( q e. U /\ r e. U ) ) -> r e. U ) |
45 |
7
|
adantr |
|- ( ( ph /\ ( q e. U /\ r e. U ) ) -> X e. B ) |
46 |
1 3 2 13 4 11 12 41 42 43 44 45
|
evls1muld |
|- ( ( ph /\ ( q e. U /\ r e. U ) ) -> ( ( O ` ( q ( .r ` P ) r ) ) ` X ) = ( ( ( O ` q ) ` X ) ( .r ` R ) ( ( O ` r ) ` X ) ) ) |
47 |
|
fveq2 |
|- ( p = ( q ( .r ` P ) r ) -> ( O ` p ) = ( O ` ( q ( .r ` P ) r ) ) ) |
48 |
47
|
fveq1d |
|- ( p = ( q ( .r ` P ) r ) -> ( ( O ` p ) ` X ) = ( ( O ` ( q ( .r ` P ) r ) ) ` X ) ) |
49 |
18
|
adantr |
|- ( ( ph /\ ( q e. U /\ r e. U ) ) -> P e. Ring ) |
50 |
4 11 49 43 44
|
ringcld |
|- ( ( ph /\ ( q e. U /\ r e. U ) ) -> ( q ( .r ` P ) r ) e. U ) |
51 |
|
fvexd |
|- ( ( ph /\ ( q e. U /\ r e. U ) ) -> ( ( O ` ( q ( .r ` P ) r ) ) ` X ) e. _V ) |
52 |
8 48 50 51
|
fvmptd3 |
|- ( ( ph /\ ( q e. U /\ r e. U ) ) -> ( F ` ( q ( .r ` P ) r ) ) = ( ( O ` ( q ( .r ` P ) r ) ) ` X ) ) |
53 |
|
fveq2 |
|- ( p = q -> ( O ` p ) = ( O ` q ) ) |
54 |
53
|
fveq1d |
|- ( p = q -> ( ( O ` p ) ` X ) = ( ( O ` q ) ` X ) ) |
55 |
|
fvexd |
|- ( ( ph /\ ( q e. U /\ r e. U ) ) -> ( ( O ` q ) ` X ) e. _V ) |
56 |
8 54 43 55
|
fvmptd3 |
|- ( ( ph /\ ( q e. U /\ r e. U ) ) -> ( F ` q ) = ( ( O ` q ) ` X ) ) |
57 |
|
fveq2 |
|- ( p = r -> ( O ` p ) = ( O ` r ) ) |
58 |
57
|
fveq1d |
|- ( p = r -> ( ( O ` p ) ` X ) = ( ( O ` r ) ` X ) ) |
59 |
|
fvexd |
|- ( ( ph /\ ( q e. U /\ r e. U ) ) -> ( ( O ` r ) ` X ) e. _V ) |
60 |
8 58 44 59
|
fvmptd3 |
|- ( ( ph /\ ( q e. U /\ r e. U ) ) -> ( F ` r ) = ( ( O ` r ) ` X ) ) |
61 |
56 60
|
oveq12d |
|- ( ( ph /\ ( q e. U /\ r e. U ) ) -> ( ( F ` q ) ( .r ` R ) ( F ` r ) ) = ( ( ( O ` q ) ` X ) ( .r ` R ) ( ( O ` r ) ` X ) ) ) |
62 |
46 52 61
|
3eqtr4d |
|- ( ( ph /\ ( q e. U /\ r e. U ) ) -> ( F ` ( q ( .r ` P ) r ) ) = ( ( F ` q ) ( .r ` R ) ( F ` r ) ) ) |
63 |
|
eqid |
|- ( +g ` P ) = ( +g ` P ) |
64 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
65 |
|
eqid |
|- ( eval1 ` R ) = ( eval1 ` R ) |
66 |
1 3 2 13 4 65 5 6
|
ressply1evl |
|- ( ph -> O = ( ( eval1 ` R ) |` U ) ) |
67 |
66
|
adantr |
|- ( ( ph /\ p e. U ) -> O = ( ( eval1 ` R ) |` U ) ) |
68 |
67
|
fveq1d |
|- ( ( ph /\ p e. U ) -> ( O ` p ) = ( ( ( eval1 ` R ) |` U ) ` p ) ) |
69 |
|
simpr |
|- ( ( ph /\ p e. U ) -> p e. U ) |
70 |
69
|
fvresd |
|- ( ( ph /\ p e. U ) -> ( ( ( eval1 ` R ) |` U ) ` p ) = ( ( eval1 ` R ) ` p ) ) |
71 |
68 70
|
eqtrd |
|- ( ( ph /\ p e. U ) -> ( O ` p ) = ( ( eval1 ` R ) ` p ) ) |
72 |
71
|
fveq1d |
|- ( ( ph /\ p e. U ) -> ( ( O ` p ) ` X ) = ( ( ( eval1 ` R ) ` p ) ` X ) ) |
73 |
|
eqid |
|- ( Poly1 ` R ) = ( Poly1 ` R ) |
74 |
|
eqid |
|- ( Base ` ( Poly1 ` R ) ) = ( Base ` ( Poly1 ` R ) ) |
75 |
5
|
adantr |
|- ( ( ph /\ p e. U ) -> R e. CRing ) |
76 |
7
|
adantr |
|- ( ( ph /\ p e. U ) -> X e. B ) |
77 |
|
eqid |
|- ( PwSer1 ` ( R |`s S ) ) = ( PwSer1 ` ( R |`s S ) ) |
78 |
|
eqid |
|- ( Base ` ( PwSer1 ` ( R |`s S ) ) ) = ( Base ` ( PwSer1 ` ( R |`s S ) ) ) |
79 |
73 13 2 4 6 77 78 74
|
ressply1bas2 |
|- ( ph -> U = ( ( Base ` ( PwSer1 ` ( R |`s S ) ) ) i^i ( Base ` ( Poly1 ` R ) ) ) ) |
80 |
|
inss2 |
|- ( ( Base ` ( PwSer1 ` ( R |`s S ) ) ) i^i ( Base ` ( Poly1 ` R ) ) ) C_ ( Base ` ( Poly1 ` R ) ) |
81 |
79 80
|
eqsstrdi |
|- ( ph -> U C_ ( Base ` ( Poly1 ` R ) ) ) |
82 |
81
|
sselda |
|- ( ( ph /\ p e. U ) -> p e. ( Base ` ( Poly1 ` R ) ) ) |
83 |
65 73 3 74 75 76 82
|
fveval1fvcl |
|- ( ( ph /\ p e. U ) -> ( ( ( eval1 ` R ) ` p ) ` X ) e. B ) |
84 |
72 83
|
eqeltrd |
|- ( ( ph /\ p e. U ) -> ( ( O ` p ) ` X ) e. B ) |
85 |
84 8
|
fmptd |
|- ( ph -> F : U --> B ) |
86 |
1 3 2 13 4 63 64 41 42 43 44 45
|
evls1addd |
|- ( ( ph /\ ( q e. U /\ r e. U ) ) -> ( ( O ` ( q ( +g ` P ) r ) ) ` X ) = ( ( ( O ` q ) ` X ) ( +g ` R ) ( ( O ` r ) ` X ) ) ) |
87 |
|
fveq2 |
|- ( p = ( q ( +g ` P ) r ) -> ( O ` p ) = ( O ` ( q ( +g ` P ) r ) ) ) |
88 |
87
|
fveq1d |
|- ( p = ( q ( +g ` P ) r ) -> ( ( O ` p ) ` X ) = ( ( O ` ( q ( +g ` P ) r ) ) ` X ) ) |
89 |
49
|
ringgrpd |
|- ( ( ph /\ ( q e. U /\ r e. U ) ) -> P e. Grp ) |
90 |
4 63 89 43 44
|
grpcld |
|- ( ( ph /\ ( q e. U /\ r e. U ) ) -> ( q ( +g ` P ) r ) e. U ) |
91 |
|
fvexd |
|- ( ( ph /\ ( q e. U /\ r e. U ) ) -> ( ( O ` ( q ( +g ` P ) r ) ) ` X ) e. _V ) |
92 |
8 88 90 91
|
fvmptd3 |
|- ( ( ph /\ ( q e. U /\ r e. U ) ) -> ( F ` ( q ( +g ` P ) r ) ) = ( ( O ` ( q ( +g ` P ) r ) ) ` X ) ) |
93 |
56 60
|
oveq12d |
|- ( ( ph /\ ( q e. U /\ r e. U ) ) -> ( ( F ` q ) ( +g ` R ) ( F ` r ) ) = ( ( ( O ` q ) ` X ) ( +g ` R ) ( ( O ` r ) ` X ) ) ) |
94 |
86 92 93
|
3eqtr4d |
|- ( ( ph /\ ( q e. U /\ r e. U ) ) -> ( F ` ( q ( +g ` P ) r ) ) = ( ( F ` q ) ( +g ` R ) ( F ` r ) ) ) |
95 |
4 9 10 11 12 18 19 40 62 3 63 64 85 94
|
isrhmd |
|- ( ph -> F e. ( P RingHom R ) ) |