| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evls1maprhm.q |
|- O = ( R evalSub1 S ) |
| 2 |
|
evls1maprhm.p |
|- P = ( Poly1 ` ( R |`s S ) ) |
| 3 |
|
evls1maprhm.b |
|- B = ( Base ` R ) |
| 4 |
|
evls1maprhm.u |
|- U = ( Base ` P ) |
| 5 |
|
evls1maprhm.r |
|- ( ph -> R e. CRing ) |
| 6 |
|
evls1maprhm.s |
|- ( ph -> S e. ( SubRing ` R ) ) |
| 7 |
|
evls1maprhm.y |
|- ( ph -> X e. B ) |
| 8 |
|
evls1maprhm.f |
|- F = ( p e. U |-> ( ( O ` p ) ` X ) ) |
| 9 |
|
eqid |
|- ( 1r ` P ) = ( 1r ` P ) |
| 10 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 11 |
|
eqid |
|- ( .r ` P ) = ( .r ` P ) |
| 12 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 13 |
|
eqid |
|- ( R |`s S ) = ( R |`s S ) |
| 14 |
13
|
subrgcrng |
|- ( ( R e. CRing /\ S e. ( SubRing ` R ) ) -> ( R |`s S ) e. CRing ) |
| 15 |
5 6 14
|
syl2anc |
|- ( ph -> ( R |`s S ) e. CRing ) |
| 16 |
2
|
ply1crng |
|- ( ( R |`s S ) e. CRing -> P e. CRing ) |
| 17 |
15 16
|
syl |
|- ( ph -> P e. CRing ) |
| 18 |
17
|
crngringd |
|- ( ph -> P e. Ring ) |
| 19 |
5
|
crngringd |
|- ( ph -> R e. Ring ) |
| 20 |
|
fveq2 |
|- ( p = ( 1r ` P ) -> ( O ` p ) = ( O ` ( 1r ` P ) ) ) |
| 21 |
20
|
fveq1d |
|- ( p = ( 1r ` P ) -> ( ( O ` p ) ` X ) = ( ( O ` ( 1r ` P ) ) ` X ) ) |
| 22 |
4 9
|
ringidcl |
|- ( P e. Ring -> ( 1r ` P ) e. U ) |
| 23 |
18 22
|
syl |
|- ( ph -> ( 1r ` P ) e. U ) |
| 24 |
|
fvexd |
|- ( ph -> ( ( O ` ( 1r ` P ) ) ` X ) e. _V ) |
| 25 |
8 21 23 24
|
fvmptd3 |
|- ( ph -> ( F ` ( 1r ` P ) ) = ( ( O ` ( 1r ` P ) ) ` X ) ) |
| 26 |
13 10
|
subrg1 |
|- ( S e. ( SubRing ` R ) -> ( 1r ` R ) = ( 1r ` ( R |`s S ) ) ) |
| 27 |
6 26
|
syl |
|- ( ph -> ( 1r ` R ) = ( 1r ` ( R |`s S ) ) ) |
| 28 |
27
|
fveq2d |
|- ( ph -> ( ( algSc ` P ) ` ( 1r ` R ) ) = ( ( algSc ` P ) ` ( 1r ` ( R |`s S ) ) ) ) |
| 29 |
15
|
crngringd |
|- ( ph -> ( R |`s S ) e. Ring ) |
| 30 |
|
eqid |
|- ( algSc ` P ) = ( algSc ` P ) |
| 31 |
|
eqid |
|- ( 1r ` ( R |`s S ) ) = ( 1r ` ( R |`s S ) ) |
| 32 |
2 30 31 9
|
ply1scl1 |
|- ( ( R |`s S ) e. Ring -> ( ( algSc ` P ) ` ( 1r ` ( R |`s S ) ) ) = ( 1r ` P ) ) |
| 33 |
29 32
|
syl |
|- ( ph -> ( ( algSc ` P ) ` ( 1r ` ( R |`s S ) ) ) = ( 1r ` P ) ) |
| 34 |
28 33
|
eqtr2d |
|- ( ph -> ( 1r ` P ) = ( ( algSc ` P ) ` ( 1r ` R ) ) ) |
| 35 |
34
|
fveq2d |
|- ( ph -> ( O ` ( 1r ` P ) ) = ( O ` ( ( algSc ` P ) ` ( 1r ` R ) ) ) ) |
| 36 |
35
|
fveq1d |
|- ( ph -> ( ( O ` ( 1r ` P ) ) ` X ) = ( ( O ` ( ( algSc ` P ) ` ( 1r ` R ) ) ) ` X ) ) |
| 37 |
10
|
subrg1cl |
|- ( S e. ( SubRing ` R ) -> ( 1r ` R ) e. S ) |
| 38 |
6 37
|
syl |
|- ( ph -> ( 1r ` R ) e. S ) |
| 39 |
1 2 13 3 30 5 6 38 7
|
evls1scafv |
|- ( ph -> ( ( O ` ( ( algSc ` P ) ` ( 1r ` R ) ) ) ` X ) = ( 1r ` R ) ) |
| 40 |
25 36 39
|
3eqtrd |
|- ( ph -> ( F ` ( 1r ` P ) ) = ( 1r ` R ) ) |
| 41 |
5
|
adantr |
|- ( ( ph /\ ( q e. U /\ r e. U ) ) -> R e. CRing ) |
| 42 |
6
|
adantr |
|- ( ( ph /\ ( q e. U /\ r e. U ) ) -> S e. ( SubRing ` R ) ) |
| 43 |
|
simprl |
|- ( ( ph /\ ( q e. U /\ r e. U ) ) -> q e. U ) |
| 44 |
|
simprr |
|- ( ( ph /\ ( q e. U /\ r e. U ) ) -> r e. U ) |
| 45 |
7
|
adantr |
|- ( ( ph /\ ( q e. U /\ r e. U ) ) -> X e. B ) |
| 46 |
1 3 2 13 4 11 12 41 42 43 44 45
|
evls1muld |
|- ( ( ph /\ ( q e. U /\ r e. U ) ) -> ( ( O ` ( q ( .r ` P ) r ) ) ` X ) = ( ( ( O ` q ) ` X ) ( .r ` R ) ( ( O ` r ) ` X ) ) ) |
| 47 |
|
fveq2 |
|- ( p = ( q ( .r ` P ) r ) -> ( O ` p ) = ( O ` ( q ( .r ` P ) r ) ) ) |
| 48 |
47
|
fveq1d |
|- ( p = ( q ( .r ` P ) r ) -> ( ( O ` p ) ` X ) = ( ( O ` ( q ( .r ` P ) r ) ) ` X ) ) |
| 49 |
18
|
adantr |
|- ( ( ph /\ ( q e. U /\ r e. U ) ) -> P e. Ring ) |
| 50 |
4 11 49 43 44
|
ringcld |
|- ( ( ph /\ ( q e. U /\ r e. U ) ) -> ( q ( .r ` P ) r ) e. U ) |
| 51 |
|
fvexd |
|- ( ( ph /\ ( q e. U /\ r e. U ) ) -> ( ( O ` ( q ( .r ` P ) r ) ) ` X ) e. _V ) |
| 52 |
8 48 50 51
|
fvmptd3 |
|- ( ( ph /\ ( q e. U /\ r e. U ) ) -> ( F ` ( q ( .r ` P ) r ) ) = ( ( O ` ( q ( .r ` P ) r ) ) ` X ) ) |
| 53 |
|
fveq2 |
|- ( p = q -> ( O ` p ) = ( O ` q ) ) |
| 54 |
53
|
fveq1d |
|- ( p = q -> ( ( O ` p ) ` X ) = ( ( O ` q ) ` X ) ) |
| 55 |
|
fvexd |
|- ( ( ph /\ ( q e. U /\ r e. U ) ) -> ( ( O ` q ) ` X ) e. _V ) |
| 56 |
8 54 43 55
|
fvmptd3 |
|- ( ( ph /\ ( q e. U /\ r e. U ) ) -> ( F ` q ) = ( ( O ` q ) ` X ) ) |
| 57 |
|
fveq2 |
|- ( p = r -> ( O ` p ) = ( O ` r ) ) |
| 58 |
57
|
fveq1d |
|- ( p = r -> ( ( O ` p ) ` X ) = ( ( O ` r ) ` X ) ) |
| 59 |
|
fvexd |
|- ( ( ph /\ ( q e. U /\ r e. U ) ) -> ( ( O ` r ) ` X ) e. _V ) |
| 60 |
8 58 44 59
|
fvmptd3 |
|- ( ( ph /\ ( q e. U /\ r e. U ) ) -> ( F ` r ) = ( ( O ` r ) ` X ) ) |
| 61 |
56 60
|
oveq12d |
|- ( ( ph /\ ( q e. U /\ r e. U ) ) -> ( ( F ` q ) ( .r ` R ) ( F ` r ) ) = ( ( ( O ` q ) ` X ) ( .r ` R ) ( ( O ` r ) ` X ) ) ) |
| 62 |
46 52 61
|
3eqtr4d |
|- ( ( ph /\ ( q e. U /\ r e. U ) ) -> ( F ` ( q ( .r ` P ) r ) ) = ( ( F ` q ) ( .r ` R ) ( F ` r ) ) ) |
| 63 |
|
eqid |
|- ( +g ` P ) = ( +g ` P ) |
| 64 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 65 |
|
eqid |
|- ( eval1 ` R ) = ( eval1 ` R ) |
| 66 |
1 3 2 13 4 65 5 6
|
ressply1evl |
|- ( ph -> O = ( ( eval1 ` R ) |` U ) ) |
| 67 |
66
|
adantr |
|- ( ( ph /\ p e. U ) -> O = ( ( eval1 ` R ) |` U ) ) |
| 68 |
67
|
fveq1d |
|- ( ( ph /\ p e. U ) -> ( O ` p ) = ( ( ( eval1 ` R ) |` U ) ` p ) ) |
| 69 |
|
simpr |
|- ( ( ph /\ p e. U ) -> p e. U ) |
| 70 |
69
|
fvresd |
|- ( ( ph /\ p e. U ) -> ( ( ( eval1 ` R ) |` U ) ` p ) = ( ( eval1 ` R ) ` p ) ) |
| 71 |
68 70
|
eqtrd |
|- ( ( ph /\ p e. U ) -> ( O ` p ) = ( ( eval1 ` R ) ` p ) ) |
| 72 |
71
|
fveq1d |
|- ( ( ph /\ p e. U ) -> ( ( O ` p ) ` X ) = ( ( ( eval1 ` R ) ` p ) ` X ) ) |
| 73 |
|
eqid |
|- ( Poly1 ` R ) = ( Poly1 ` R ) |
| 74 |
|
eqid |
|- ( Base ` ( Poly1 ` R ) ) = ( Base ` ( Poly1 ` R ) ) |
| 75 |
5
|
adantr |
|- ( ( ph /\ p e. U ) -> R e. CRing ) |
| 76 |
7
|
adantr |
|- ( ( ph /\ p e. U ) -> X e. B ) |
| 77 |
|
eqid |
|- ( PwSer1 ` ( R |`s S ) ) = ( PwSer1 ` ( R |`s S ) ) |
| 78 |
|
eqid |
|- ( Base ` ( PwSer1 ` ( R |`s S ) ) ) = ( Base ` ( PwSer1 ` ( R |`s S ) ) ) |
| 79 |
73 13 2 4 6 77 78 74
|
ressply1bas2 |
|- ( ph -> U = ( ( Base ` ( PwSer1 ` ( R |`s S ) ) ) i^i ( Base ` ( Poly1 ` R ) ) ) ) |
| 80 |
|
inss2 |
|- ( ( Base ` ( PwSer1 ` ( R |`s S ) ) ) i^i ( Base ` ( Poly1 ` R ) ) ) C_ ( Base ` ( Poly1 ` R ) ) |
| 81 |
79 80
|
eqsstrdi |
|- ( ph -> U C_ ( Base ` ( Poly1 ` R ) ) ) |
| 82 |
81
|
sselda |
|- ( ( ph /\ p e. U ) -> p e. ( Base ` ( Poly1 ` R ) ) ) |
| 83 |
65 73 3 74 75 76 82
|
fveval1fvcl |
|- ( ( ph /\ p e. U ) -> ( ( ( eval1 ` R ) ` p ) ` X ) e. B ) |
| 84 |
72 83
|
eqeltrd |
|- ( ( ph /\ p e. U ) -> ( ( O ` p ) ` X ) e. B ) |
| 85 |
84 8
|
fmptd |
|- ( ph -> F : U --> B ) |
| 86 |
1 3 2 13 4 63 64 41 42 43 44 45
|
evls1addd |
|- ( ( ph /\ ( q e. U /\ r e. U ) ) -> ( ( O ` ( q ( +g ` P ) r ) ) ` X ) = ( ( ( O ` q ) ` X ) ( +g ` R ) ( ( O ` r ) ` X ) ) ) |
| 87 |
|
fveq2 |
|- ( p = ( q ( +g ` P ) r ) -> ( O ` p ) = ( O ` ( q ( +g ` P ) r ) ) ) |
| 88 |
87
|
fveq1d |
|- ( p = ( q ( +g ` P ) r ) -> ( ( O ` p ) ` X ) = ( ( O ` ( q ( +g ` P ) r ) ) ` X ) ) |
| 89 |
49
|
ringgrpd |
|- ( ( ph /\ ( q e. U /\ r e. U ) ) -> P e. Grp ) |
| 90 |
4 63 89 43 44
|
grpcld |
|- ( ( ph /\ ( q e. U /\ r e. U ) ) -> ( q ( +g ` P ) r ) e. U ) |
| 91 |
|
fvexd |
|- ( ( ph /\ ( q e. U /\ r e. U ) ) -> ( ( O ` ( q ( +g ` P ) r ) ) ` X ) e. _V ) |
| 92 |
8 88 90 91
|
fvmptd3 |
|- ( ( ph /\ ( q e. U /\ r e. U ) ) -> ( F ` ( q ( +g ` P ) r ) ) = ( ( O ` ( q ( +g ` P ) r ) ) ` X ) ) |
| 93 |
56 60
|
oveq12d |
|- ( ( ph /\ ( q e. U /\ r e. U ) ) -> ( ( F ` q ) ( +g ` R ) ( F ` r ) ) = ( ( ( O ` q ) ` X ) ( +g ` R ) ( ( O ` r ) ` X ) ) ) |
| 94 |
86 92 93
|
3eqtr4d |
|- ( ( ph /\ ( q e. U /\ r e. U ) ) -> ( F ` ( q ( +g ` P ) r ) ) = ( ( F ` q ) ( +g ` R ) ( F ` r ) ) ) |
| 95 |
4 9 10 11 12 18 19 40 62 3 63 64 85 94
|
isrhmd |
|- ( ph -> F e. ( P RingHom R ) ) |