| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evls1maprhm.q |
|- O = ( R evalSub1 S ) |
| 2 |
|
evls1maprhm.p |
|- P = ( Poly1 ` ( R |`s S ) ) |
| 3 |
|
evls1maprhm.b |
|- B = ( Base ` R ) |
| 4 |
|
evls1maprhm.u |
|- U = ( Base ` P ) |
| 5 |
|
evls1maprhm.r |
|- ( ph -> R e. CRing ) |
| 6 |
|
evls1maprhm.s |
|- ( ph -> S e. ( SubRing ` R ) ) |
| 7 |
|
evls1maprhm.y |
|- ( ph -> X e. B ) |
| 8 |
|
evls1maprhm.f |
|- F = ( p e. U |-> ( ( O ` p ) ` X ) ) |
| 9 |
|
evls1maplmhm.1 |
|- A = ( ( subringAlg ` R ) ` S ) |
| 10 |
|
eqid |
|- ( R |`s S ) = ( R |`s S ) |
| 11 |
10
|
subrgring |
|- ( S e. ( SubRing ` R ) -> ( R |`s S ) e. Ring ) |
| 12 |
6 11
|
syl |
|- ( ph -> ( R |`s S ) e. Ring ) |
| 13 |
2
|
ply1lmod |
|- ( ( R |`s S ) e. Ring -> P e. LMod ) |
| 14 |
12 13
|
syl |
|- ( ph -> P e. LMod ) |
| 15 |
9
|
sralmod |
|- ( S e. ( SubRing ` R ) -> A e. LMod ) |
| 16 |
6 15
|
syl |
|- ( ph -> A e. LMod ) |
| 17 |
1 2 3 4 5 6 7 8
|
evls1maprhm |
|- ( ph -> F e. ( P RingHom R ) ) |
| 18 |
|
rhmghm |
|- ( F e. ( P RingHom R ) -> F e. ( P GrpHom R ) ) |
| 19 |
17 18
|
syl |
|- ( ph -> F e. ( P GrpHom R ) ) |
| 20 |
4
|
a1i |
|- ( ph -> U = ( Base ` P ) ) |
| 21 |
3
|
a1i |
|- ( ph -> B = ( Base ` R ) ) |
| 22 |
9
|
a1i |
|- ( ph -> A = ( ( subringAlg ` R ) ` S ) ) |
| 23 |
3
|
subrgss |
|- ( S e. ( SubRing ` R ) -> S C_ B ) |
| 24 |
6 23
|
syl |
|- ( ph -> S C_ B ) |
| 25 |
24 3
|
sseqtrdi |
|- ( ph -> S C_ ( Base ` R ) ) |
| 26 |
22 25
|
srabase |
|- ( ph -> ( Base ` R ) = ( Base ` A ) ) |
| 27 |
3 26
|
eqtrid |
|- ( ph -> B = ( Base ` A ) ) |
| 28 |
|
eqidd |
|- ( ( ph /\ ( x e. U /\ y e. U ) ) -> ( x ( +g ` P ) y ) = ( x ( +g ` P ) y ) ) |
| 29 |
22 25
|
sraaddg |
|- ( ph -> ( +g ` R ) = ( +g ` A ) ) |
| 30 |
29
|
oveqdr |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` R ) y ) = ( x ( +g ` A ) y ) ) |
| 31 |
20 21 20 27 28 30
|
ghmpropd |
|- ( ph -> ( P GrpHom R ) = ( P GrpHom A ) ) |
| 32 |
19 31
|
eleqtrd |
|- ( ph -> F e. ( P GrpHom A ) ) |
| 33 |
22 25
|
srasca |
|- ( ph -> ( R |`s S ) = ( Scalar ` A ) ) |
| 34 |
|
ovex |
|- ( R |`s S ) e. _V |
| 35 |
2
|
ply1sca |
|- ( ( R |`s S ) e. _V -> ( R |`s S ) = ( Scalar ` P ) ) |
| 36 |
34 35
|
mp1i |
|- ( ph -> ( R |`s S ) = ( Scalar ` P ) ) |
| 37 |
33 36
|
eqtr3d |
|- ( ph -> ( Scalar ` A ) = ( Scalar ` P ) ) |
| 38 |
|
fveq2 |
|- ( p = ( k ( .s ` P ) x ) -> ( O ` p ) = ( O ` ( k ( .s ` P ) x ) ) ) |
| 39 |
38
|
fveq1d |
|- ( p = ( k ( .s ` P ) x ) -> ( ( O ` p ) ` X ) = ( ( O ` ( k ( .s ` P ) x ) ) ` X ) ) |
| 40 |
14
|
ad2antrr |
|- ( ( ( ph /\ k e. ( Base ` ( Scalar ` P ) ) ) /\ x e. U ) -> P e. LMod ) |
| 41 |
|
simplr |
|- ( ( ( ph /\ k e. ( Base ` ( Scalar ` P ) ) ) /\ x e. U ) -> k e. ( Base ` ( Scalar ` P ) ) ) |
| 42 |
|
simpr |
|- ( ( ( ph /\ k e. ( Base ` ( Scalar ` P ) ) ) /\ x e. U ) -> x e. U ) |
| 43 |
|
eqid |
|- ( Scalar ` P ) = ( Scalar ` P ) |
| 44 |
|
eqid |
|- ( .s ` P ) = ( .s ` P ) |
| 45 |
|
eqid |
|- ( Base ` ( Scalar ` P ) ) = ( Base ` ( Scalar ` P ) ) |
| 46 |
4 43 44 45
|
lmodvscl |
|- ( ( P e. LMod /\ k e. ( Base ` ( Scalar ` P ) ) /\ x e. U ) -> ( k ( .s ` P ) x ) e. U ) |
| 47 |
40 41 42 46
|
syl3anc |
|- ( ( ( ph /\ k e. ( Base ` ( Scalar ` P ) ) ) /\ x e. U ) -> ( k ( .s ` P ) x ) e. U ) |
| 48 |
|
fvexd |
|- ( ( ( ph /\ k e. ( Base ` ( Scalar ` P ) ) ) /\ x e. U ) -> ( ( O ` ( k ( .s ` P ) x ) ) ` X ) e. _V ) |
| 49 |
8 39 47 48
|
fvmptd3 |
|- ( ( ( ph /\ k e. ( Base ` ( Scalar ` P ) ) ) /\ x e. U ) -> ( F ` ( k ( .s ` P ) x ) ) = ( ( O ` ( k ( .s ` P ) x ) ) ` X ) ) |
| 50 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 51 |
5
|
ad2antrr |
|- ( ( ( ph /\ k e. ( Base ` ( Scalar ` P ) ) ) /\ x e. U ) -> R e. CRing ) |
| 52 |
6
|
ad2antrr |
|- ( ( ( ph /\ k e. ( Base ` ( Scalar ` P ) ) ) /\ x e. U ) -> S e. ( SubRing ` R ) ) |
| 53 |
10 3
|
ressbas2 |
|- ( S C_ B -> S = ( Base ` ( R |`s S ) ) ) |
| 54 |
24 53
|
syl |
|- ( ph -> S = ( Base ` ( R |`s S ) ) ) |
| 55 |
36
|
fveq2d |
|- ( ph -> ( Base ` ( R |`s S ) ) = ( Base ` ( Scalar ` P ) ) ) |
| 56 |
54 55
|
eqtr2d |
|- ( ph -> ( Base ` ( Scalar ` P ) ) = S ) |
| 57 |
56
|
eqimssd |
|- ( ph -> ( Base ` ( Scalar ` P ) ) C_ S ) |
| 58 |
57
|
sselda |
|- ( ( ph /\ k e. ( Base ` ( Scalar ` P ) ) ) -> k e. S ) |
| 59 |
58
|
adantr |
|- ( ( ( ph /\ k e. ( Base ` ( Scalar ` P ) ) ) /\ x e. U ) -> k e. S ) |
| 60 |
7
|
ad2antrr |
|- ( ( ( ph /\ k e. ( Base ` ( Scalar ` P ) ) ) /\ x e. U ) -> X e. B ) |
| 61 |
1 3 2 10 4 44 50 51 52 59 42 60
|
evls1vsca |
|- ( ( ( ph /\ k e. ( Base ` ( Scalar ` P ) ) ) /\ x e. U ) -> ( ( O ` ( k ( .s ` P ) x ) ) ` X ) = ( k ( .r ` R ) ( ( O ` x ) ` X ) ) ) |
| 62 |
22 25
|
sravsca |
|- ( ph -> ( .r ` R ) = ( .s ` A ) ) |
| 63 |
62
|
ad2antrr |
|- ( ( ( ph /\ k e. ( Base ` ( Scalar ` P ) ) ) /\ x e. U ) -> ( .r ` R ) = ( .s ` A ) ) |
| 64 |
|
eqidd |
|- ( ( ( ph /\ k e. ( Base ` ( Scalar ` P ) ) ) /\ x e. U ) -> k = k ) |
| 65 |
|
fveq2 |
|- ( p = x -> ( O ` p ) = ( O ` x ) ) |
| 66 |
65
|
fveq1d |
|- ( p = x -> ( ( O ` p ) ` X ) = ( ( O ` x ) ` X ) ) |
| 67 |
|
fvexd |
|- ( ( ( ph /\ k e. ( Base ` ( Scalar ` P ) ) ) /\ x e. U ) -> ( ( O ` x ) ` X ) e. _V ) |
| 68 |
8 66 42 67
|
fvmptd3 |
|- ( ( ( ph /\ k e. ( Base ` ( Scalar ` P ) ) ) /\ x e. U ) -> ( F ` x ) = ( ( O ` x ) ` X ) ) |
| 69 |
68
|
eqcomd |
|- ( ( ( ph /\ k e. ( Base ` ( Scalar ` P ) ) ) /\ x e. U ) -> ( ( O ` x ) ` X ) = ( F ` x ) ) |
| 70 |
63 64 69
|
oveq123d |
|- ( ( ( ph /\ k e. ( Base ` ( Scalar ` P ) ) ) /\ x e. U ) -> ( k ( .r ` R ) ( ( O ` x ) ` X ) ) = ( k ( .s ` A ) ( F ` x ) ) ) |
| 71 |
49 61 70
|
3eqtrd |
|- ( ( ( ph /\ k e. ( Base ` ( Scalar ` P ) ) ) /\ x e. U ) -> ( F ` ( k ( .s ` P ) x ) ) = ( k ( .s ` A ) ( F ` x ) ) ) |
| 72 |
71
|
anasss |
|- ( ( ph /\ ( k e. ( Base ` ( Scalar ` P ) ) /\ x e. U ) ) -> ( F ` ( k ( .s ` P ) x ) ) = ( k ( .s ` A ) ( F ` x ) ) ) |
| 73 |
72
|
ralrimivva |
|- ( ph -> A. k e. ( Base ` ( Scalar ` P ) ) A. x e. U ( F ` ( k ( .s ` P ) x ) ) = ( k ( .s ` A ) ( F ` x ) ) ) |
| 74 |
|
eqid |
|- ( Scalar ` A ) = ( Scalar ` A ) |
| 75 |
|
eqid |
|- ( .s ` A ) = ( .s ` A ) |
| 76 |
43 74 45 4 44 75
|
islmhm |
|- ( F e. ( P LMHom A ) <-> ( ( P e. LMod /\ A e. LMod ) /\ ( F e. ( P GrpHom A ) /\ ( Scalar ` A ) = ( Scalar ` P ) /\ A. k e. ( Base ` ( Scalar ` P ) ) A. x e. U ( F ` ( k ( .s ` P ) x ) ) = ( k ( .s ` A ) ( F ` x ) ) ) ) ) |
| 77 |
76
|
biimpri |
|- ( ( ( P e. LMod /\ A e. LMod ) /\ ( F e. ( P GrpHom A ) /\ ( Scalar ` A ) = ( Scalar ` P ) /\ A. k e. ( Base ` ( Scalar ` P ) ) A. x e. U ( F ` ( k ( .s ` P ) x ) ) = ( k ( .s ` A ) ( F ` x ) ) ) ) -> F e. ( P LMHom A ) ) |
| 78 |
14 16 32 37 73 77
|
syl23anc |
|- ( ph -> F e. ( P LMHom A ) ) |