| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evls1maprhm.q |
⊢ 𝑂 = ( 𝑅 evalSub1 𝑆 ) |
| 2 |
|
evls1maprhm.p |
⊢ 𝑃 = ( Poly1 ‘ ( 𝑅 ↾s 𝑆 ) ) |
| 3 |
|
evls1maprhm.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 4 |
|
evls1maprhm.u |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
| 5 |
|
evls1maprhm.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 6 |
|
evls1maprhm.s |
⊢ ( 𝜑 → 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) |
| 7 |
|
evls1maprhm.y |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 8 |
|
evls1maprhm.f |
⊢ 𝐹 = ( 𝑝 ∈ 𝑈 ↦ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) ) |
| 9 |
|
evls1maplmhm.1 |
⊢ 𝐴 = ( ( subringAlg ‘ 𝑅 ) ‘ 𝑆 ) |
| 10 |
|
eqid |
⊢ ( 𝑅 ↾s 𝑆 ) = ( 𝑅 ↾s 𝑆 ) |
| 11 |
10
|
subrgring |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑅 ↾s 𝑆 ) ∈ Ring ) |
| 12 |
6 11
|
syl |
⊢ ( 𝜑 → ( 𝑅 ↾s 𝑆 ) ∈ Ring ) |
| 13 |
2
|
ply1lmod |
⊢ ( ( 𝑅 ↾s 𝑆 ) ∈ Ring → 𝑃 ∈ LMod ) |
| 14 |
12 13
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ LMod ) |
| 15 |
9
|
sralmod |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 ∈ LMod ) |
| 16 |
6 15
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ LMod ) |
| 17 |
1 2 3 4 5 6 7 8
|
evls1maprhm |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑃 RingHom 𝑅 ) ) |
| 18 |
|
rhmghm |
⊢ ( 𝐹 ∈ ( 𝑃 RingHom 𝑅 ) → 𝐹 ∈ ( 𝑃 GrpHom 𝑅 ) ) |
| 19 |
17 18
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑃 GrpHom 𝑅 ) ) |
| 20 |
4
|
a1i |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝑃 ) ) |
| 21 |
3
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) |
| 22 |
9
|
a1i |
⊢ ( 𝜑 → 𝐴 = ( ( subringAlg ‘ 𝑅 ) ‘ 𝑆 ) ) |
| 23 |
3
|
subrgss |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) → 𝑆 ⊆ 𝐵 ) |
| 24 |
6 23
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
| 25 |
24 3
|
sseqtrdi |
⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝑅 ) ) |
| 26 |
22 25
|
srabase |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ 𝐴 ) ) |
| 27 |
3 26
|
eqtrid |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐴 ) ) |
| 28 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ) |
| 29 |
22 25
|
sraaddg |
⊢ ( 𝜑 → ( +g ‘ 𝑅 ) = ( +g ‘ 𝐴 ) ) |
| 30 |
29
|
oveqdr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐴 ) 𝑦 ) ) |
| 31 |
20 21 20 27 28 30
|
ghmpropd |
⊢ ( 𝜑 → ( 𝑃 GrpHom 𝑅 ) = ( 𝑃 GrpHom 𝐴 ) ) |
| 32 |
19 31
|
eleqtrd |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑃 GrpHom 𝐴 ) ) |
| 33 |
22 25
|
srasca |
⊢ ( 𝜑 → ( 𝑅 ↾s 𝑆 ) = ( Scalar ‘ 𝐴 ) ) |
| 34 |
|
ovex |
⊢ ( 𝑅 ↾s 𝑆 ) ∈ V |
| 35 |
2
|
ply1sca |
⊢ ( ( 𝑅 ↾s 𝑆 ) ∈ V → ( 𝑅 ↾s 𝑆 ) = ( Scalar ‘ 𝑃 ) ) |
| 36 |
34 35
|
mp1i |
⊢ ( 𝜑 → ( 𝑅 ↾s 𝑆 ) = ( Scalar ‘ 𝑃 ) ) |
| 37 |
33 36
|
eqtr3d |
⊢ ( 𝜑 → ( Scalar ‘ 𝐴 ) = ( Scalar ‘ 𝑃 ) ) |
| 38 |
|
fveq2 |
⊢ ( 𝑝 = ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑥 ) → ( 𝑂 ‘ 𝑝 ) = ( 𝑂 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑥 ) ) ) |
| 39 |
38
|
fveq1d |
⊢ ( 𝑝 = ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑥 ) → ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) = ( ( 𝑂 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑥 ) ) ‘ 𝑋 ) ) |
| 40 |
14
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ 𝑈 ) → 𝑃 ∈ LMod ) |
| 41 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ 𝑈 ) → 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 42 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ∈ 𝑈 ) |
| 43 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
| 44 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) |
| 45 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) |
| 46 |
4 43 44 45
|
lmodvscl |
⊢ ( ( 𝑃 ∈ LMod ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑥 ∈ 𝑈 ) → ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑥 ) ∈ 𝑈 ) |
| 47 |
40 41 42 46
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ 𝑈 ) → ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑥 ) ∈ 𝑈 ) |
| 48 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ 𝑈 ) → ( ( 𝑂 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑥 ) ) ‘ 𝑋 ) ∈ V ) |
| 49 |
8 39 47 48
|
fvmptd3 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ 𝑈 ) → ( 𝐹 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑥 ) ) = ( ( 𝑂 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑥 ) ) ‘ 𝑋 ) ) |
| 50 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 51 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ 𝑈 ) → 𝑅 ∈ CRing ) |
| 52 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ 𝑈 ) → 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) |
| 53 |
10 3
|
ressbas2 |
⊢ ( 𝑆 ⊆ 𝐵 → 𝑆 = ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ) |
| 54 |
24 53
|
syl |
⊢ ( 𝜑 → 𝑆 = ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ) |
| 55 |
36
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 56 |
54 55
|
eqtr2d |
⊢ ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝑃 ) ) = 𝑆 ) |
| 57 |
56
|
eqimssd |
⊢ ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝑃 ) ) ⊆ 𝑆 ) |
| 58 |
57
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) → 𝑘 ∈ 𝑆 ) |
| 59 |
58
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ 𝑈 ) → 𝑘 ∈ 𝑆 ) |
| 60 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ 𝑈 ) → 𝑋 ∈ 𝐵 ) |
| 61 |
1 3 2 10 4 44 50 51 52 59 42 60
|
evls1vsca |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ 𝑈 ) → ( ( 𝑂 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑥 ) ) ‘ 𝑋 ) = ( 𝑘 ( .r ‘ 𝑅 ) ( ( 𝑂 ‘ 𝑥 ) ‘ 𝑋 ) ) ) |
| 62 |
22 25
|
sravsca |
⊢ ( 𝜑 → ( .r ‘ 𝑅 ) = ( ·𝑠 ‘ 𝐴 ) ) |
| 63 |
62
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ 𝑈 ) → ( .r ‘ 𝑅 ) = ( ·𝑠 ‘ 𝐴 ) ) |
| 64 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ 𝑈 ) → 𝑘 = 𝑘 ) |
| 65 |
|
fveq2 |
⊢ ( 𝑝 = 𝑥 → ( 𝑂 ‘ 𝑝 ) = ( 𝑂 ‘ 𝑥 ) ) |
| 66 |
65
|
fveq1d |
⊢ ( 𝑝 = 𝑥 → ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) = ( ( 𝑂 ‘ 𝑥 ) ‘ 𝑋 ) ) |
| 67 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ 𝑈 ) → ( ( 𝑂 ‘ 𝑥 ) ‘ 𝑋 ) ∈ V ) |
| 68 |
8 66 42 67
|
fvmptd3 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ 𝑈 ) → ( 𝐹 ‘ 𝑥 ) = ( ( 𝑂 ‘ 𝑥 ) ‘ 𝑋 ) ) |
| 69 |
68
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ 𝑈 ) → ( ( 𝑂 ‘ 𝑥 ) ‘ 𝑋 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 70 |
63 64 69
|
oveq123d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ 𝑈 ) → ( 𝑘 ( .r ‘ 𝑅 ) ( ( 𝑂 ‘ 𝑥 ) ‘ 𝑋 ) ) = ( 𝑘 ( ·𝑠 ‘ 𝐴 ) ( 𝐹 ‘ 𝑥 ) ) ) |
| 71 |
49 61 70
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ 𝑈 ) → ( 𝐹 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑥 ) ) = ( 𝑘 ( ·𝑠 ‘ 𝐴 ) ( 𝐹 ‘ 𝑥 ) ) ) |
| 72 |
71
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑥 ∈ 𝑈 ) ) → ( 𝐹 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑥 ) ) = ( 𝑘 ( ·𝑠 ‘ 𝐴 ) ( 𝐹 ‘ 𝑥 ) ) ) |
| 73 |
72
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∀ 𝑥 ∈ 𝑈 ( 𝐹 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑥 ) ) = ( 𝑘 ( ·𝑠 ‘ 𝐴 ) ( 𝐹 ‘ 𝑥 ) ) ) |
| 74 |
|
eqid |
⊢ ( Scalar ‘ 𝐴 ) = ( Scalar ‘ 𝐴 ) |
| 75 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐴 ) = ( ·𝑠 ‘ 𝐴 ) |
| 76 |
43 74 45 4 44 75
|
islmhm |
⊢ ( 𝐹 ∈ ( 𝑃 LMHom 𝐴 ) ↔ ( ( 𝑃 ∈ LMod ∧ 𝐴 ∈ LMod ) ∧ ( 𝐹 ∈ ( 𝑃 GrpHom 𝐴 ) ∧ ( Scalar ‘ 𝐴 ) = ( Scalar ‘ 𝑃 ) ∧ ∀ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∀ 𝑥 ∈ 𝑈 ( 𝐹 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑥 ) ) = ( 𝑘 ( ·𝑠 ‘ 𝐴 ) ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 77 |
76
|
biimpri |
⊢ ( ( ( 𝑃 ∈ LMod ∧ 𝐴 ∈ LMod ) ∧ ( 𝐹 ∈ ( 𝑃 GrpHom 𝐴 ) ∧ ( Scalar ‘ 𝐴 ) = ( Scalar ‘ 𝑃 ) ∧ ∀ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∀ 𝑥 ∈ 𝑈 ( 𝐹 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑥 ) ) = ( 𝑘 ( ·𝑠 ‘ 𝐴 ) ( 𝐹 ‘ 𝑥 ) ) ) ) → 𝐹 ∈ ( 𝑃 LMHom 𝐴 ) ) |
| 78 |
14 16 32 37 73 77
|
syl23anc |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑃 LMHom 𝐴 ) ) |