| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evls1maprhm.q |
⊢ 𝑂 = ( 𝑅 evalSub1 𝑆 ) |
| 2 |
|
evls1maprhm.p |
⊢ 𝑃 = ( Poly1 ‘ ( 𝑅 ↾s 𝑆 ) ) |
| 3 |
|
evls1maprhm.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 4 |
|
evls1maprhm.u |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
| 5 |
|
evls1maprhm.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 6 |
|
evls1maprhm.s |
⊢ ( 𝜑 → 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) |
| 7 |
|
evls1maprhm.y |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 8 |
|
evls1maprhm.f |
⊢ 𝐹 = ( 𝑝 ∈ 𝑈 ↦ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) ) |
| 9 |
|
eqid |
⊢ ( Poly1 ‘ 𝑅 ) = ( Poly1 ‘ 𝑅 ) |
| 10 |
|
eqid |
⊢ ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) = ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) |
| 11 |
|
eqid |
⊢ ( 𝑅 ↾s 𝑆 ) = ( 𝑅 ↾s 𝑆 ) |
| 12 |
|
eqid |
⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 ) |
| 13 |
9 10 11 2 6 12
|
subrg1ascl |
⊢ ( 𝜑 → ( algSc ‘ 𝑃 ) = ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ↾ 𝑆 ) ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( algSc ‘ 𝑃 ) = ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ↾ 𝑆 ) ) |
| 15 |
14
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( algSc ‘ 𝑃 ) ‘ 𝑦 ) = ( ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ↾ 𝑆 ) ‘ 𝑦 ) ) |
| 16 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝑆 ) |
| 17 |
16
|
fvresd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ↾ 𝑆 ) ‘ 𝑦 ) = ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑦 ) ) |
| 18 |
15 17
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( algSc ‘ 𝑃 ) ‘ 𝑦 ) = ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑦 ) ) |
| 19 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) |
| 20 |
10 11 9 2 4 19 16
|
asclply1subcl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑦 ) ∈ 𝑈 ) |
| 21 |
18 20
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( algSc ‘ 𝑃 ) ‘ 𝑦 ) ∈ 𝑈 ) |
| 22 |
|
fveq2 |
⊢ ( 𝑝 = ( ( algSc ‘ 𝑃 ) ‘ 𝑦 ) → ( 𝑂 ‘ 𝑝 ) = ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 𝑦 ) ) ) |
| 23 |
22
|
fveq1d |
⊢ ( 𝑝 = ( ( algSc ‘ 𝑃 ) ‘ 𝑦 ) → ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) = ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 𝑦 ) ) ‘ 𝑋 ) ) |
| 24 |
23
|
eqeq2d |
⊢ ( 𝑝 = ( ( algSc ‘ 𝑃 ) ‘ 𝑦 ) → ( 𝑦 = ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) ↔ 𝑦 = ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 𝑦 ) ) ‘ 𝑋 ) ) ) |
| 25 |
24
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑝 = ( ( algSc ‘ 𝑃 ) ‘ 𝑦 ) ) → ( 𝑦 = ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) ↔ 𝑦 = ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 𝑦 ) ) ‘ 𝑋 ) ) ) |
| 26 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑅 ∈ CRing ) |
| 27 |
1 2 11 3 12 26 19 16
|
evls1sca |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 𝑦 ) ) = ( 𝐵 × { 𝑦 } ) ) |
| 28 |
27
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 𝑦 ) ) ‘ 𝑋 ) = ( ( 𝐵 × { 𝑦 } ) ‘ 𝑋 ) ) |
| 29 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑋 ∈ 𝐵 ) |
| 30 |
|
vex |
⊢ 𝑦 ∈ V |
| 31 |
30
|
fvconst2 |
⊢ ( 𝑋 ∈ 𝐵 → ( ( 𝐵 × { 𝑦 } ) ‘ 𝑋 ) = 𝑦 ) |
| 32 |
29 31
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝐵 × { 𝑦 } ) ‘ 𝑋 ) = 𝑦 ) |
| 33 |
28 32
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 = ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 𝑦 ) ) ‘ 𝑋 ) ) |
| 34 |
21 25 33
|
rspcedvd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ∃ 𝑝 ∈ 𝑈 𝑦 = ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) ) |
| 35 |
8 34 16
|
elrnmptd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ ran 𝐹 ) |
| 36 |
35
|
ex |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑆 → 𝑦 ∈ ran 𝐹 ) ) |
| 37 |
36
|
ssrdv |
⊢ ( 𝜑 → 𝑆 ⊆ ran 𝐹 ) |