Metamath Proof Explorer


Theorem evls1maprnss

Description: The function F mapping polynomials p to their subring evaluation at a given point A takes all values in the subring S . (Contributed by Thierry Arnoux, 25-Feb-2025)

Ref Expression
Hypotheses evls1maprhm.q 𝑂 = ( 𝑅 evalSub1 𝑆 )
evls1maprhm.p 𝑃 = ( Poly1 ‘ ( 𝑅s 𝑆 ) )
evls1maprhm.b 𝐵 = ( Base ‘ 𝑅 )
evls1maprhm.u 𝑈 = ( Base ‘ 𝑃 )
evls1maprhm.r ( 𝜑𝑅 ∈ CRing )
evls1maprhm.s ( 𝜑𝑆 ∈ ( SubRing ‘ 𝑅 ) )
evls1maprhm.y ( 𝜑𝑋𝐵 )
evls1maprhm.f 𝐹 = ( 𝑝𝑈 ↦ ( ( 𝑂𝑝 ) ‘ 𝑋 ) )
Assertion evls1maprnss ( 𝜑𝑆 ⊆ ran 𝐹 )

Proof

Step Hyp Ref Expression
1 evls1maprhm.q 𝑂 = ( 𝑅 evalSub1 𝑆 )
2 evls1maprhm.p 𝑃 = ( Poly1 ‘ ( 𝑅s 𝑆 ) )
3 evls1maprhm.b 𝐵 = ( Base ‘ 𝑅 )
4 evls1maprhm.u 𝑈 = ( Base ‘ 𝑃 )
5 evls1maprhm.r ( 𝜑𝑅 ∈ CRing )
6 evls1maprhm.s ( 𝜑𝑆 ∈ ( SubRing ‘ 𝑅 ) )
7 evls1maprhm.y ( 𝜑𝑋𝐵 )
8 evls1maprhm.f 𝐹 = ( 𝑝𝑈 ↦ ( ( 𝑂𝑝 ) ‘ 𝑋 ) )
9 eqid ( Poly1𝑅 ) = ( Poly1𝑅 )
10 eqid ( algSc ‘ ( Poly1𝑅 ) ) = ( algSc ‘ ( Poly1𝑅 ) )
11 eqid ( 𝑅s 𝑆 ) = ( 𝑅s 𝑆 )
12 eqid ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 )
13 9 10 11 2 6 12 subrg1ascl ( 𝜑 → ( algSc ‘ 𝑃 ) = ( ( algSc ‘ ( Poly1𝑅 ) ) ↾ 𝑆 ) )
14 13 adantr ( ( 𝜑𝑦𝑆 ) → ( algSc ‘ 𝑃 ) = ( ( algSc ‘ ( Poly1𝑅 ) ) ↾ 𝑆 ) )
15 14 fveq1d ( ( 𝜑𝑦𝑆 ) → ( ( algSc ‘ 𝑃 ) ‘ 𝑦 ) = ( ( ( algSc ‘ ( Poly1𝑅 ) ) ↾ 𝑆 ) ‘ 𝑦 ) )
16 simpr ( ( 𝜑𝑦𝑆 ) → 𝑦𝑆 )
17 16 fvresd ( ( 𝜑𝑦𝑆 ) → ( ( ( algSc ‘ ( Poly1𝑅 ) ) ↾ 𝑆 ) ‘ 𝑦 ) = ( ( algSc ‘ ( Poly1𝑅 ) ) ‘ 𝑦 ) )
18 15 17 eqtrd ( ( 𝜑𝑦𝑆 ) → ( ( algSc ‘ 𝑃 ) ‘ 𝑦 ) = ( ( algSc ‘ ( Poly1𝑅 ) ) ‘ 𝑦 ) )
19 6 adantr ( ( 𝜑𝑦𝑆 ) → 𝑆 ∈ ( SubRing ‘ 𝑅 ) )
20 10 11 9 2 4 19 16 asclply1subcl ( ( 𝜑𝑦𝑆 ) → ( ( algSc ‘ ( Poly1𝑅 ) ) ‘ 𝑦 ) ∈ 𝑈 )
21 18 20 eqeltrd ( ( 𝜑𝑦𝑆 ) → ( ( algSc ‘ 𝑃 ) ‘ 𝑦 ) ∈ 𝑈 )
22 fveq2 ( 𝑝 = ( ( algSc ‘ 𝑃 ) ‘ 𝑦 ) → ( 𝑂𝑝 ) = ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 𝑦 ) ) )
23 22 fveq1d ( 𝑝 = ( ( algSc ‘ 𝑃 ) ‘ 𝑦 ) → ( ( 𝑂𝑝 ) ‘ 𝑋 ) = ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 𝑦 ) ) ‘ 𝑋 ) )
24 23 eqeq2d ( 𝑝 = ( ( algSc ‘ 𝑃 ) ‘ 𝑦 ) → ( 𝑦 = ( ( 𝑂𝑝 ) ‘ 𝑋 ) ↔ 𝑦 = ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 𝑦 ) ) ‘ 𝑋 ) ) )
25 24 adantl ( ( ( 𝜑𝑦𝑆 ) ∧ 𝑝 = ( ( algSc ‘ 𝑃 ) ‘ 𝑦 ) ) → ( 𝑦 = ( ( 𝑂𝑝 ) ‘ 𝑋 ) ↔ 𝑦 = ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 𝑦 ) ) ‘ 𝑋 ) ) )
26 5 adantr ( ( 𝜑𝑦𝑆 ) → 𝑅 ∈ CRing )
27 1 2 11 3 12 26 19 16 evls1sca ( ( 𝜑𝑦𝑆 ) → ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 𝑦 ) ) = ( 𝐵 × { 𝑦 } ) )
28 27 fveq1d ( ( 𝜑𝑦𝑆 ) → ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 𝑦 ) ) ‘ 𝑋 ) = ( ( 𝐵 × { 𝑦 } ) ‘ 𝑋 ) )
29 7 adantr ( ( 𝜑𝑦𝑆 ) → 𝑋𝐵 )
30 vex 𝑦 ∈ V
31 30 fvconst2 ( 𝑋𝐵 → ( ( 𝐵 × { 𝑦 } ) ‘ 𝑋 ) = 𝑦 )
32 29 31 syl ( ( 𝜑𝑦𝑆 ) → ( ( 𝐵 × { 𝑦 } ) ‘ 𝑋 ) = 𝑦 )
33 28 32 eqtr2d ( ( 𝜑𝑦𝑆 ) → 𝑦 = ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 𝑦 ) ) ‘ 𝑋 ) )
34 21 25 33 rspcedvd ( ( 𝜑𝑦𝑆 ) → ∃ 𝑝𝑈 𝑦 = ( ( 𝑂𝑝 ) ‘ 𝑋 ) )
35 8 34 16 elrnmptd ( ( 𝜑𝑦𝑆 ) → 𝑦 ∈ ran 𝐹 )
36 35 ex ( 𝜑 → ( 𝑦𝑆𝑦 ∈ ran 𝐹 ) )
37 36 ssrdv ( 𝜑𝑆 ⊆ ran 𝐹 )