| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evls1sca.q |
⊢ 𝑄 = ( 𝑆 evalSub1 𝑅 ) |
| 2 |
|
evls1sca.w |
⊢ 𝑊 = ( Poly1 ‘ 𝑈 ) |
| 3 |
|
evls1sca.u |
⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) |
| 4 |
|
evls1sca.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
| 5 |
|
evls1sca.a |
⊢ 𝐴 = ( algSc ‘ 𝑊 ) |
| 6 |
|
evls1sca.s |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
| 7 |
|
evls1sca.r |
⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
| 8 |
|
evls1sca.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑅 ) |
| 9 |
|
1on |
⊢ 1o ∈ On |
| 10 |
|
eqid |
⊢ ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) = ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) |
| 11 |
|
eqid |
⊢ ( 1o mPoly 𝑈 ) = ( 1o mPoly 𝑈 ) |
| 12 |
|
eqid |
⊢ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) = ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) |
| 13 |
10 11 3 12 4
|
evlsrhm |
⊢ ( ( 1o ∈ On ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ∈ ( ( 1o mPoly 𝑈 ) RingHom ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
| 14 |
9 6 7 13
|
mp3an2i |
⊢ ( 𝜑 → ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ∈ ( ( 1o mPoly 𝑈 ) RingHom ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
| 15 |
|
eqid |
⊢ ( Base ‘ ( 1o mPoly 𝑈 ) ) = ( Base ‘ ( 1o mPoly 𝑈 ) ) |
| 16 |
|
eqid |
⊢ ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) = ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) |
| 17 |
15 16
|
rhmf |
⊢ ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ∈ ( ( 1o mPoly 𝑈 ) RingHom ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) → ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) : ( Base ‘ ( 1o mPoly 𝑈 ) ) ⟶ ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
| 18 |
14 17
|
syl |
⊢ ( 𝜑 → ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) : ( Base ‘ ( 1o mPoly 𝑈 ) ) ⟶ ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
| 19 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 20 |
3
|
subrgring |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑈 ∈ Ring ) |
| 21 |
7 20
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ Ring ) |
| 22 |
2
|
ply1ring |
⊢ ( 𝑈 ∈ Ring → 𝑊 ∈ Ring ) |
| 23 |
21 22
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ Ring ) |
| 24 |
2
|
ply1lmod |
⊢ ( 𝑈 ∈ Ring → 𝑊 ∈ LMod ) |
| 25 |
21 24
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 26 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
| 27 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 28 |
5 19 23 25 26 27
|
asclf |
⊢ ( 𝜑 → 𝐴 : ( Base ‘ ( Scalar ‘ 𝑊 ) ) ⟶ ( Base ‘ 𝑊 ) ) |
| 29 |
4
|
subrgss |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 ⊆ 𝐵 ) |
| 30 |
7 29
|
syl |
⊢ ( 𝜑 → 𝑅 ⊆ 𝐵 ) |
| 31 |
3 4
|
ressbas2 |
⊢ ( 𝑅 ⊆ 𝐵 → 𝑅 = ( Base ‘ 𝑈 ) ) |
| 32 |
30 31
|
syl |
⊢ ( 𝜑 → 𝑅 = ( Base ‘ 𝑈 ) ) |
| 33 |
2
|
ply1sca |
⊢ ( 𝑈 ∈ Ring → 𝑈 = ( Scalar ‘ 𝑊 ) ) |
| 34 |
21 33
|
syl |
⊢ ( 𝜑 → 𝑈 = ( Scalar ‘ 𝑊 ) ) |
| 35 |
34
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑈 ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 36 |
32 35
|
eqtrd |
⊢ ( 𝜑 → 𝑅 = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 37 |
2 27
|
ply1bas |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ ( 1o mPoly 𝑈 ) ) |
| 38 |
37
|
a1i |
⊢ ( 𝜑 → ( Base ‘ 𝑊 ) = ( Base ‘ ( 1o mPoly 𝑈 ) ) ) |
| 39 |
38
|
eqcomd |
⊢ ( 𝜑 → ( Base ‘ ( 1o mPoly 𝑈 ) ) = ( Base ‘ 𝑊 ) ) |
| 40 |
36 39
|
feq23d |
⊢ ( 𝜑 → ( 𝐴 : 𝑅 ⟶ ( Base ‘ ( 1o mPoly 𝑈 ) ) ↔ 𝐴 : ( Base ‘ ( Scalar ‘ 𝑊 ) ) ⟶ ( Base ‘ 𝑊 ) ) ) |
| 41 |
28 40
|
mpbird |
⊢ ( 𝜑 → 𝐴 : 𝑅 ⟶ ( Base ‘ ( 1o mPoly 𝑈 ) ) ) |
| 42 |
41 8
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑋 ) ∈ ( Base ‘ ( 1o mPoly 𝑈 ) ) ) |
| 43 |
|
fvco3 |
⊢ ( ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) : ( Base ‘ ( 1o mPoly 𝑈 ) ) ⟶ ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) ∧ ( 𝐴 ‘ 𝑋 ) ∈ ( Base ‘ ( 1o mPoly 𝑈 ) ) ) → ( ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ‘ ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( 𝐴 ‘ 𝑋 ) ) ) ) |
| 44 |
18 42 43
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ‘ ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( 𝐴 ‘ 𝑋 ) ) ) ) |
| 45 |
5
|
a1i |
⊢ ( 𝜑 → 𝐴 = ( algSc ‘ 𝑊 ) ) |
| 46 |
|
eqid |
⊢ ( algSc ‘ 𝑊 ) = ( algSc ‘ 𝑊 ) |
| 47 |
2 46
|
ply1ascl |
⊢ ( algSc ‘ 𝑊 ) = ( algSc ‘ ( 1o mPoly 𝑈 ) ) |
| 48 |
45 47
|
eqtrdi |
⊢ ( 𝜑 → 𝐴 = ( algSc ‘ ( 1o mPoly 𝑈 ) ) ) |
| 49 |
48
|
fveq1d |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑋 ) = ( ( algSc ‘ ( 1o mPoly 𝑈 ) ) ‘ 𝑋 ) ) |
| 50 |
49
|
fveq2d |
⊢ ( 𝜑 → ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( 𝐴 ‘ 𝑋 ) ) = ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( ( algSc ‘ ( 1o mPoly 𝑈 ) ) ‘ 𝑋 ) ) ) |
| 51 |
|
eqid |
⊢ ( algSc ‘ ( 1o mPoly 𝑈 ) ) = ( algSc ‘ ( 1o mPoly 𝑈 ) ) |
| 52 |
9
|
a1i |
⊢ ( 𝜑 → 1o ∈ On ) |
| 53 |
10 11 3 4 51 52 6 7 8
|
evlssca |
⊢ ( 𝜑 → ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( ( algSc ‘ ( 1o mPoly 𝑈 ) ) ‘ 𝑋 ) ) = ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ) |
| 54 |
50 53
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( 𝐴 ‘ 𝑋 ) ) = ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ) |
| 55 |
54
|
fveq2d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ‘ ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( 𝐴 ‘ 𝑋 ) ) ) = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ‘ ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ) ) |
| 56 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) = ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ) |
| 57 |
|
coeq1 |
⊢ ( 𝑥 = ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) → ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) = ( ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
| 58 |
57
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ) → ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) = ( ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
| 59 |
30 8
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 60 |
|
fconst6g |
⊢ ( 𝑋 ∈ 𝐵 → ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) : ( 𝐵 ↑m 1o ) ⟶ 𝐵 ) |
| 61 |
59 60
|
syl |
⊢ ( 𝜑 → ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) : ( 𝐵 ↑m 1o ) ⟶ 𝐵 ) |
| 62 |
4
|
fvexi |
⊢ 𝐵 ∈ V |
| 63 |
62
|
a1i |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 64 |
|
ovex |
⊢ ( 𝐵 ↑m 1o ) ∈ V |
| 65 |
64
|
a1i |
⊢ ( 𝜑 → ( 𝐵 ↑m 1o ) ∈ V ) |
| 66 |
63 65
|
elmapd |
⊢ ( 𝜑 → ( ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↔ ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) : ( 𝐵 ↑m 1o ) ⟶ 𝐵 ) ) |
| 67 |
61 66
|
mpbird |
⊢ ( 𝜑 → ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ) |
| 68 |
|
snex |
⊢ { 𝑋 } ∈ V |
| 69 |
64 68
|
xpex |
⊢ ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ∈ V |
| 70 |
69
|
a1i |
⊢ ( 𝜑 → ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ∈ V ) |
| 71 |
63
|
mptexd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ∈ V ) |
| 72 |
|
coexg |
⊢ ( ( ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ∈ V ∧ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ∈ V ) → ( ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ∈ V ) |
| 73 |
70 71 72
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ∈ V ) |
| 74 |
56 58 67 73
|
fvmptd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ‘ ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ) = ( ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
| 75 |
|
fconst6g |
⊢ ( 𝑦 ∈ 𝐵 → ( 1o × { 𝑦 } ) : 1o ⟶ 𝐵 ) |
| 76 |
75
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 1o × { 𝑦 } ) : 1o ⟶ 𝐵 ) |
| 77 |
62 9
|
pm3.2i |
⊢ ( 𝐵 ∈ V ∧ 1o ∈ On ) |
| 78 |
77
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝐵 ∈ V ∧ 1o ∈ On ) ) |
| 79 |
|
elmapg |
⊢ ( ( 𝐵 ∈ V ∧ 1o ∈ On ) → ( ( 1o × { 𝑦 } ) ∈ ( 𝐵 ↑m 1o ) ↔ ( 1o × { 𝑦 } ) : 1o ⟶ 𝐵 ) ) |
| 80 |
78 79
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ( 1o × { 𝑦 } ) ∈ ( 𝐵 ↑m 1o ) ↔ ( 1o × { 𝑦 } ) : 1o ⟶ 𝐵 ) ) |
| 81 |
76 80
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 1o × { 𝑦 } ) ∈ ( 𝐵 ↑m 1o ) ) |
| 82 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) = ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) |
| 83 |
|
fconstmpt |
⊢ ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) = ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ 𝑋 ) |
| 84 |
83
|
a1i |
⊢ ( 𝜑 → ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) = ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ 𝑋 ) ) |
| 85 |
|
eqidd |
⊢ ( 𝑧 = ( 1o × { 𝑦 } ) → 𝑋 = 𝑋 ) |
| 86 |
81 82 84 85
|
fmptco |
⊢ ( 𝜑 → ( ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) = ( 𝑦 ∈ 𝐵 ↦ 𝑋 ) ) |
| 87 |
74 86
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ‘ ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ) = ( 𝑦 ∈ 𝐵 ↦ 𝑋 ) ) |
| 88 |
44 55 87
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) = ( 𝑦 ∈ 𝐵 ↦ 𝑋 ) ) |
| 89 |
|
elpwg |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → ( 𝑅 ∈ 𝒫 𝐵 ↔ 𝑅 ⊆ 𝐵 ) ) |
| 90 |
29 89
|
mpbird |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 ∈ 𝒫 𝐵 ) |
| 91 |
7 90
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ 𝒫 𝐵 ) |
| 92 |
|
eqid |
⊢ ( 1o evalSub 𝑆 ) = ( 1o evalSub 𝑆 ) |
| 93 |
1 92 4
|
evls1fval |
⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ 𝒫 𝐵 ) → 𝑄 = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ) ) |
| 94 |
6 91 93
|
syl2anc |
⊢ ( 𝜑 → 𝑄 = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ) ) |
| 95 |
94
|
fveq1d |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) ) = ( ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) ) |
| 96 |
|
fconstmpt |
⊢ ( 𝐵 × { 𝑋 } ) = ( 𝑦 ∈ 𝐵 ↦ 𝑋 ) |
| 97 |
96
|
a1i |
⊢ ( 𝜑 → ( 𝐵 × { 𝑋 } ) = ( 𝑦 ∈ 𝐵 ↦ 𝑋 ) ) |
| 98 |
88 95 97
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) ) = ( 𝐵 × { 𝑋 } ) ) |