Metamath Proof Explorer


Theorem evls1maprnss

Description: The function F mapping polynomials p to their subring evaluation at a given point A takes all values in the subring S . (Contributed by Thierry Arnoux, 25-Feb-2025)

Ref Expression
Hypotheses evls1maprhm.q O=RevalSub1S
evls1maprhm.p P=Poly1R𝑠S
evls1maprhm.b B=BaseR
evls1maprhm.u U=BaseP
evls1maprhm.r φRCRing
evls1maprhm.s φSSubRingR
evls1maprhm.y φXB
evls1maprhm.f F=pUOpX
Assertion evls1maprnss φSranF

Proof

Step Hyp Ref Expression
1 evls1maprhm.q O=RevalSub1S
2 evls1maprhm.p P=Poly1R𝑠S
3 evls1maprhm.b B=BaseR
4 evls1maprhm.u U=BaseP
5 evls1maprhm.r φRCRing
6 evls1maprhm.s φSSubRingR
7 evls1maprhm.y φXB
8 evls1maprhm.f F=pUOpX
9 eqid Poly1R=Poly1R
10 eqid algScPoly1R=algScPoly1R
11 eqid R𝑠S=R𝑠S
12 eqid algScP=algScP
13 9 10 11 2 6 12 subrg1ascl φalgScP=algScPoly1RS
14 13 adantr φySalgScP=algScPoly1RS
15 14 fveq1d φySalgScPy=algScPoly1RSy
16 simpr φySyS
17 16 fvresd φySalgScPoly1RSy=algScPoly1Ry
18 15 17 eqtrd φySalgScPy=algScPoly1Ry
19 6 adantr φySSSubRingR
20 10 11 9 2 4 19 16 asclply1subcl φySalgScPoly1RyU
21 18 20 eqeltrd φySalgScPyU
22 fveq2 p=algScPyOp=OalgScPy
23 22 fveq1d p=algScPyOpX=OalgScPyX
24 23 eqeq2d p=algScPyy=OpXy=OalgScPyX
25 24 adantl φySp=algScPyy=OpXy=OalgScPyX
26 5 adantr φySRCRing
27 1 2 11 3 12 26 19 16 evls1sca φySOalgScPy=B×y
28 27 fveq1d φySOalgScPyX=B×yX
29 7 adantr φySXB
30 vex yV
31 30 fvconst2 XBB×yX=y
32 29 31 syl φySB×yX=y
33 28 32 eqtr2d φySy=OalgScPyX
34 21 25 33 rspcedvd φySpUy=OpX
35 8 34 16 elrnmptd φySyranF
36 35 ex φySyranF
37 36 ssrdv φSranF